Bài 5 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 39, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một vật chuyển động có quãng đường được xác định bởi phương trình (sleft( t right) = 2{t^2} + 5t + 2), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm (t = 4).
Đề bài
Một vật chuyển động có quãng đường được xác định bởi phương trình \(s\left( t \right) = 2{t^2} + 5t + 2\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm \(t = 4\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
+ Sử dụng kiến thức về ý nghĩa đạo hàm để tính: Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\)
Lời giải chi tiết
Ta có: Với \({t_0}\) bất kì ta có:
\(s'\left( {{t_0}} \right) \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2{t^2} + 5t + 2 - 2t_0^2 - 5{t_0} - 2}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2\left( {{t^2} - t_0^2} \right) + 5\left( {t - {t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( {2t + 2{t_0} + 5} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \left( {2t + 2{t_0} + 5} \right) \) \( = 4{t_0} + 5\)
Do đó, \(s'\left( t \right) = 4t + 5\)
Vậy vận tốc tức thời tại thời điểm \(t = 4\) là: \(s'\left( 4 \right) = 4.4 + 5 = 21\) (giây)
Bài 5 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Bài tập 5 yêu cầu học sinh tính đạo hàm của các hàm số sau:
Áp dụng quy tắc tính đạo hàm của hàm số đa thức, ta có:
f'(x) = 3x2 - 6x + 2
Áp dụng quy tắc đạo hàm của hàm số lượng giác và đạo hàm hợp, ta có:
g'(x) = 2cos(2x) - sin(x)
Áp dụng quy tắc đạo hàm của hàm số mũ và hàm số logarit, ta có:
h'(x) = ex + 1/x
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để hiểu sâu hơn về đạo hàm, học sinh có thể tìm hiểu thêm về các chủ đề sau:
Bài 5 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập cơ bản về đạo hàm. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp học sinh tự tin hơn trong việc học tập môn Toán 11.
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em học sinh hiểu rõ hơn về bài tập và đạt kết quả tốt trong học tập.