Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 22 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \({4^x} - {5.2^x} + 4 = 0\);
b) \({\left( {\frac{1}{9}} \right)^x} - 2.{\left( {\frac{1}{3}} \right)^{x - 1}} - 27 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giải phương trình mũ để giải: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
Lời giải chi tiết
a) \({4^x} - {5.2^x} + 4 = 0 \) \( \Leftrightarrow {\left( {{2^x}} \right)^2} - {5.2^x} + 4 = 0 \) \( \Leftrightarrow \left( {{2^x} - 1} \right)\left( {{2^x} - 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = 4\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}{2^x} = {2^0}\\{2^x} = {2^2}\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Vậy nghiệm của phương trình đã cho là: \(x = 0;x = 2\).
b) \({\left( {\frac{1}{9}} \right)^x} - 2.{\left( {\frac{1}{3}} \right)^{x - 1}} - 27 = 0 \) \( \Leftrightarrow {\left( {\frac{1}{3}} \right)^{2x}} - 6.{\left( {\frac{1}{3}} \right)^x} - 27 = 0 \) \( \Leftrightarrow \left[ {{{\left( {\frac{1}{3}} \right)}^x} + 3} \right]\left[ {{{\left( {\frac{1}{3}} \right)}^x} - 9} \right] = 0\)
\( \Leftrightarrow {\left( {\frac{1}{3}} \right)^x} - 9 = 0\left( {do\;{{\left( {\frac{1}{3}} \right)}^x} + 3 > 0\forall x \in \mathbb{R}} \right) \) \( \Leftrightarrow \;{\left( {\frac{1}{3}} \right)^x} = {\left( {\frac{1}{3}} \right)^{ - 2}} \) \( \Leftrightarrow x = - 2\)
Vậy nghiệm của phương trình đã cho là: \(x = - 2\)
Bài 5 trang 22 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán liên quan đến việc xác định tập xác định, tập giá trị, tính chu kỳ và vẽ đồ thị của hàm số.
Bài 5 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Hàm số y = sin(2x) xác định khi và chỉ khi biểu thức bên trong hàm sin xác định. Vì hàm sin xác định với mọi giá trị thực của x, nên 2x cũng xác định với mọi giá trị thực của x. Do đó, tập xác định của hàm số y = sin(2x) là R.
Hàm số y = cos(x + π/3) là một hàm cosin với biên độ bằng 1 và pha ban đầu là π/3. Tập giá trị của hàm cosin là [-1, 1]. Do đó, tập giá trị của hàm số y = cos(x + π/3) là [-1, 1].
Chu kỳ của hàm số y = tan(x) là π. Chu kỳ của hàm số y = tan(ax) là π/|a|. Trong trường hợp này, a = 3, nên chu kỳ của hàm số y = tan(3x) là π/3.
Để vẽ đồ thị của hàm số y = cot(x/2), ta cần xác định các điểm đặc biệt và các đường tiệm cận. Hàm số y = cot(x) có các đường tiệm cận đứng là x = kπ, với k là số nguyên. Do đó, hàm số y = cot(x/2) có các đường tiệm cận đứng là x = 2kπ, với k là số nguyên. Đồ thị của hàm số y = cot(x/2) có dạng tương tự như đồ thị của hàm số y = cot(x), nhưng được giãn rộng theo phương ngang.
Khi giải các bài tập về hàm số lượng giác, cần lưu ý những điều sau:
Kiến thức về hàm số lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 2, hoặc tìm kiếm trên các trang web học toán online.
Bài 5 trang 22 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh hiểu sâu về các hàm số lượng giác. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các bạn sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.