Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC). b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\).

Đề bài

Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.

a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).

b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\). Chứng minh OH vuông góc với (ADC).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

+ Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng cũng vuông góc với mặt phẳng thứ ba.

Lời giải chi tiết

Giải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

a) Vì AB là giao tuyến của hai mặt phẳng (ABC) và (ABD), hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC) nên \(AB \bot \left( {BCD} \right)\)\( \Rightarrow AB \bot CD\)

Mà \(BE \bot CD \Rightarrow CD \bot \left( {ABE} \right)\). Lại có: \(CD \subset \left( {ACD} \right) \Rightarrow \left( {ABE} \right) \bot \left( {ACD} \right)\)

Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot DF\), mà \(DF \bot BC \Rightarrow DF \bot \left( {ABC} \right) \Rightarrow DF \bot AC\)

Mà \(DK \bot AC \Rightarrow AC \bot \left( {DFK} \right)\). Lại có: \(AC \subset \left( {ADC} \right) \Rightarrow \left( {DFK} \right) \bot \left( {ADC} \right)\)

b) Vì O là giao điểm của hai đường cao BE và DF, H là giao điểm của hai đường cao AE và DK nên OH là giao tuyến của (ABE) và (DFK).

Mà \(\left( {ABE} \right) \bot \left( {ACD} \right),\left( {DFK} \right) \bot \left( {ADC} \right)\) và nên \(OH \bot \left( {ACD} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng tính toán là yếu tố then chốt để hoàn thành bài tập này một cách chính xác.

Nội dung bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, và các bài toán thực tế.

Hướng dẫn giải chi tiết bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Để giải bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, bạn cần thực hiện theo các bước sau:

  1. Xác định hàm số: Xác định rõ hàm số cần tính đạo hàm hoặc giải phương trình.
  2. Chọn quy tắc tính đạo hàm phù hợp: Lựa chọn quy tắc tính đạo hàm phù hợp với dạng hàm số đã cho.
  3. Thực hiện tính toán: Thực hiện tính toán đạo hàm một cách cẩn thận và chính xác.
  4. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Ví dụ minh họa giải bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

Áp dụng quy tắc tính đạo hàm của tổng và tích, ta có:

f'(x) = d(3x2)/dx + d(2x)/dx - d(1)/dx

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững lý thuyết: Hiểu rõ các định nghĩa, định lý, và quy tắc tính đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm tính toán để kiểm tra kết quả.
  • Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, hãy hỏi thầy cô giáo, bạn bè, hoặc tìm kiếm trên internet.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 2 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả trên đây, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 11