Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B. Biết \(AB = a,BC = a\sqrt 3 \),
Đề bài
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B. Biết \(AB = a,BC = a\sqrt 3 \), góc giữa hai mặt phẳng (C’AB) và (ABC) bằng \({60^0}\). Tính \({V_{ABC.A'B'C'}}\)
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.
+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)
Lời giải chi tiết
Vì \(AB \bot BC,AB \bot CC' \Rightarrow AB \bot \left( {BCC'} \right) \Rightarrow AB \bot C'B\)
Ta có: \(AB \bot CB,C'B \bot AB\) và AB là giao tuyến của hai mặt phẳng (C’AB) và (ABC)
Do đó, \(\left( {\left( {C'AB} \right),\left( {ABC} \right)} \right) = \left( {CB,C'B} \right) = \widehat {C'BC} = {60^0}\)
Vì \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CB\). Do đó, tam giác C’BC vuông tại C.
Suy ra: \(CC' = BC.\tan \widehat {C'BC} = a\sqrt 3 .\tan {60^0} = 3a\)
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}.a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\)
Thể tích hình lăng trụ ABC.A’B’C’ là:
\({V_{ABC.A'B'C'}} = CC'.{S_{ABC}} = 3a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{3{a^3}\sqrt 3 }}{2}\)
Bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1 tại x = 2.
Giải:
f'(x) = 6x + 2
f'(2) = 6(2) + 2 = 14
Vậy, đạo hàm của hàm số f(x) tại x = 2 là 14.
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).
Giải:
g'(x) = cos(x) - sin(x)
Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).
Khi giải bài tập về đạo hàm, bạn cần chú ý đến các điểm sau:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:
Bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán 11.
Hàm số f(x) | Đạo hàm f'(x) |
---|---|
C (hằng số) | 0 |
xn | nxn-1 |
sin(x) | cos(x) |
cos(x) | -sin(x) |
ex | ex |
ln(x) | 1/x |