Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 5 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B. Biết \(AB = a,BC = a\sqrt 3 \),

Đề bài

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B. Biết \(AB = a,BC = a\sqrt 3 \), góc giữa hai mặt phẳng (C’AB) và (ABC) bằng \({60^0}\). Tính \({V_{ABC.A'B'C'}}\)

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.

+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)

Lời giải chi tiết

Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Vì \(AB \bot BC,AB \bot CC' \Rightarrow AB \bot \left( {BCC'} \right) \Rightarrow AB \bot C'B\)

Ta có: \(AB \bot CB,C'B \bot AB\) và AB là giao tuyến của hai mặt phẳng (C’AB) và (ABC)

Do đó, \(\left( {\left( {C'AB} \right),\left( {ABC} \right)} \right) = \left( {CB,C'B} \right) = \widehat {C'BC} = {60^0}\)

Vì \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CB\). Do đó, tam giác C’BC vuông tại C.

Suy ra: \(CC' = BC.\tan \widehat {C'BC} = a\sqrt 3 .\tan {60^0} = 3a\)

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}.a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\)

Thể tích hình lăng trụ ABC.A’B’C’ là:

\({V_{ABC.A'B'C'}} = CC'.{S_{ABC}} = 3a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{3{a^3}\sqrt 3 }}{2}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 5 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập

Bài 5 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các hệ số trong biểu thức đạo hàm.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Phương pháp giải bài tập

Để giải bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn cần:

  1. Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản.
  2. Sử dụng thành thạo các phép toán trên hàm số (cộng, trừ, nhân, chia).
  3. Phân tích kỹ đề bài để xác định đúng dạng bài tập và phương pháp giải phù hợp.
  4. Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1 tại x = 2.

Giải:

f'(x) = 6x + 2

f'(2) = 6(2) + 2 = 14

Vậy, đạo hàm của hàm số f(x) tại x = 2 là 14.

Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).

Giải:

g'(x) = cos(x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, bạn cần chú ý đến các điểm sau:

  • Đảm bảo rằng bạn đã nắm vững các định nghĩa và quy tắc liên quan đến đạo hàm.
  • Sử dụng đúng các ký hiệu toán học.
  • Kiểm tra lại kết quả để tránh sai sót.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:

  • Tính đạo hàm của hàm số h(x) = x3 - 4x + 5.
  • Tìm đạo hàm của hàm số k(x) = ex + ln(x).
  • Xác định hệ số a sao cho hàm số y = ax2 + bx + c có đạo hàm tại x = 1 bằng 2.

Kết luận

Bài 5 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán 11.

Bảng tổng hợp các quy tắc đạo hàm cơ bản

Hàm số f(x)Đạo hàm f'(x)
C (hằng số)0
xnnxn-1
sin(x)cos(x)
cos(x)-sin(x)
exex
ln(x)1/x

Tài liệu, đề thi và đáp án Toán 11