Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 38 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho parabol (P) có phương trình (y = {x^2}). Tìm hệ số góc của tiếp tuyến của parabol (P)

Đề bài

Cho parabol (P) có phương trình \(y = {x^2}\). Tìm hệ số góc của tiếp tuyến của parabol (P)

a) Tại điểm \(\left( { - 1;1} \right)\);

b) Tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Lời giải chi tiết

Với \({x_0}\) bất kì ta có:

\(y'\left( {{x_0}} \right) \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\)

Do đó, \(y' = 2x\)

a) Hệ số góc của tiếp tuyến của parabol (P) tại điểm \(\left( { - 1;1} \right)\) là: \(y'\left( { - 1} \right) = 2.\left( { - 1} \right) = - 2\)

b) Hoành độ giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là nghiệm của phương trình: \({x^2} = - 3x + 2 \) \( \Leftrightarrow {x^2} + 3x - 2 = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt {17} }}{2}\\x = \frac{{ - 3 - \sqrt {17} }}{2}\end{array} \right.\)

Do đó, \(k = y'\left( {\frac{{ - 3 + \sqrt {17} }}{2}} \right) = - 3 + \sqrt {17}\), \(k = y'\left( {\frac{{ - 3 - \sqrt {17} }}{2}} \right) = - 3 - \sqrt {17} \)

Vậy hệ số góc tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là: \(k = - 3 + \sqrt {17} ;k = - 3 - \sqrt {17} \)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 2 trang 38 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập

Bài 2 trang 38 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Lời giải chi tiết bài 2 trang 38

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, đây chỉ là một ví dụ minh họa, bạn có thể áp dụng các bước giải tương tự để giải các bài tập khác.

Phần 1: Tính đạo hàm của hàm số tại một điểm

Để tính đạo hàm của hàm số tại một điểm, bạn có thể sử dụng định nghĩa đạo hàm hoặc các quy tắc tính đạo hàm đã học. Ví dụ, nếu hàm số là f(x) = x2, thì đạo hàm của hàm số tại điểm x = 2 là f'(2) = 2x|x=2 = 4.

Phần 2: Tìm đạo hàm của hàm số

Để tìm đạo hàm của hàm số, bạn cần áp dụng các quy tắc tính đạo hàm cho từng thành phần của hàm số. Ví dụ, nếu hàm số là f(x) = x3 + 2x2 - 5x + 1, thì đạo hàm của hàm số là f'(x) = 3x2 + 4x - 5.

Phần 3: Vận dụng đạo hàm để giải các bài toán thực tế

Đạo hàm có nhiều ứng dụng trong thực tế, chẳng hạn như tính tốc độ thay đổi của một đại lượng, tìm cực trị của hàm số, hoặc giải các bài toán tối ưu hóa. Để vận dụng đạo hàm để giải các bài toán thực tế, bạn cần hiểu rõ ý nghĩa của đạo hàm và cách sử dụng đạo hàm để giải quyết các vấn đề cụ thể.

Các lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, bạn cần lưu ý một số điều sau:

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Hiểu rõ các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các lưu ý trên, bạn đã có thể giải bài 2 trang 38 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11