Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 7 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 7 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Tùy theo giá trị của \(a > 0\), tìm giới hạn \(\lim \frac{{{a^n}}}{{{a^n} + 1}}\).

Đề bài

Tùy theo giá trị của \(a > 0\), tìm giới hạn \(\lim \frac{{{a^n}}}{{{a^n} + 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

+ Sử dụng kiến thức về một số giới hạn cơ bản để tính: \(\lim {q^n} = 0\) (q là số thực, \(\left| q \right| < 1\)), \(\lim c = c\) (c là hằng số).

Lời giải chi tiết

Nếu \(0 < a < 1\) thì \(\lim {a^n} = 0\) nên \(\lim \frac{{{a^n}}}{{{a^n} + 1}} = \frac{{\lim {a^n}}}{{\lim {a^n} + 1}} = \frac{0}{{0 + 1}} = 0\).

Nếu \(a = 1\) thì \(\lim \frac{{{a^n}}}{{{a^n} + 1}} = \lim \frac{{{1^n}}}{{{1^n} + 1}} = \lim \frac{1}{{1 + 1}} = \frac{1}{2}\).

Nếu \(a > 1\) thì \(\lim \frac{{{a^n}}}{{{a^n} + 1}} = \lim \frac{1}{{1 + {{\left( {\frac{1}{a}} \right)}^n}}}\).

Vì \(a > 1\) nên \(0 < \frac{1}{a} < 1\), suy ra \(\lim {\left( {\frac{1}{a}} \right)^n} = 0\).

Do đó, \(\lim \frac{{{a^n}}}{{{a^n} + 1}} = \lim \frac{1}{{1 + {{\left( {\frac{1}{a}} \right)}^n}}} = \frac{1}{{1 + \lim {{\left( {\frac{1}{a}} \right)}^n}}} = \frac{1}{{1 + 0}} = 1\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 7 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường tập trung vào việc vận dụng các kiến thức về hàm số lượng giác, các phép biến đổi lượng giác và việc vẽ đồ thị hàm số để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 7 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Yêu cầu học sinh xác định khoảng giá trị của x để hàm số có nghĩa.
  • Tìm tập giá trị của hàm số lượng giác: Yêu cầu học sinh tìm khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Yêu cầu học sinh vẽ đồ thị của hàm số dựa trên các tính chất đã khảo sát.
  • Giải phương trình lượng giác: Yêu cầu học sinh tìm nghiệm của phương trình lượng giác.

Phương pháp giải bài tập

Để giải bài 7 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, tính chất và công thức liên quan đến hàm số lượng giác.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ yêu cầu và các thông tin đã cho.
  3. Sử dụng các phép biến đổi lượng giác: Áp dụng các công thức biến đổi lượng giác để đơn giản hóa biểu thức và giải quyết bài toán.
  4. Vẽ đồ thị hàm số: Sử dụng đồ thị hàm số để trực quan hóa bài toán và tìm ra nghiệm.
  5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Giải phương trình lượng giác: 2sin(x) - 1 = 0

Lời giải:

2sin(x) - 1 = 0

2sin(x) = 1

sin(x) = 1/2

x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)

Lưu ý quan trọng

Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý các điểm sau:

  • Đơn vị đo góc: Đảm bảo sử dụng đúng đơn vị đo góc (độ hoặc radian).
  • Miền xác định: Xác định đúng miền xác định của hàm số.
  • Tính tuần hoàn: Nắm vững tính tuần hoàn của hàm số lượng giác.
  • Các phép biến đổi lượng giác: Sử dụng đúng các công thức biến đổi lượng giác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Bài 7 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng với những hướng dẫn chi tiết và phương pháp giải hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài tập này một cách thành công. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11