Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 5 trang 90 này với mục tiêu giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Xét tính liên tục của các hàm số sau: a) \(f\left( x \right) = {x^3} - {x^2} + 2\); b) \(f\left( x \right) = \frac{{x + 1}}{{{x^2} - 4x}}\); c) \(f\left( x \right) = \frac{{2x - 1}}{{{x^2} - x + 1}}\) d) \(f\left( x \right) = \sqrt {{x^2} - 2x} \).

Đề bài

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = {x^3} - {x^2} + 2\);

b) \(f\left( x \right) = \frac{{x + 1}}{{{x^2} - 4x}}\);

c) \(f\left( x \right) = \frac{{2x - 1}}{{{x^2} - x + 1}}\)

d) \(f\left( x \right) = \sqrt {{x^2} - 2x} \).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để xét tính liên tục của hàm số:

a) Hàm số đa thức \(y = P\left( x \right)\) có liên tục trên \(\mathbb{R}\).

b, c) Hàm số phân thức \(y = \frac{{P\left( x \right)}}{{Q\left( x \right)}}\) liên tục trên các khoảng của tập xác định của chúng (với P(x) và Q(x) là các đa thức).

d) Hàm số căn thức \(y = \sqrt {P\left( x \right)} \) liên tục trên các khoảng của tập xác định của chúng (với P(x) là đa thức).

Lời giải chi tiết

a) Hàm số \(f\left( x \right) \) \( = {x^3} - {x^2} + 2\) là hàm đa thức nên hàm số \(f\left( x \right) \) \( = {x^3} - {x^2} + 2\) liên tục trên \(\mathbb{R}\).

b) Hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) xác định khi \({x^2} - 4x \ne 0 \Leftrightarrow x\left( {x - 4} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 4\end{array} \right.\)

Tập xác định của hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) là \(D \) \( = \left( { - \infty ;0} \right) \cup \left( {0;4} \right) \cup \left( {4; + \infty } \right)\).

Do đó, hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) liên tục trên các khoảng \(\left( { - \infty ;0} \right)\), \(\left( {0;4} \right)\)và \(\left( {4; + \infty } \right)\).

c) Vì \({x^2} - x + 1 \) \( = {x^2} - 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + \frac{3}{4} \) \( = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \in \mathbb{R}\)

Do đó, hàm số \(f\left( x \right) \) \( = \frac{{2x - 1}}{{{x^2} - x + 1}}\) liên tục trên \(\mathbb{R}\).

d) Hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) xác định khi \({x^2} - 2x \ge 0 \Leftrightarrow x\left( {x - 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 \ge 0\\x \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le 0\end{array} \right.\)

Tập xác định của hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) là \(D \) \( = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\).

Do đó, hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) liên tục trên các khoảng \(\left( { - \infty ;0} \right]\) và \(\left[ {2; + \infty } \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 5 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của hàm số lượng giác: Tìm tập xác định, tập giá trị, chu kỳ, biên độ, pha, và các điểm đặc biệt của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các kiến thức về biến đổi đồ thị để vẽ đồ thị của hàm số.
  • Giải phương trình lượng giác: Giải các phương trình lượng giác dựa trên đồ thị hàm số.
  • Ứng dụng hàm số lượng giác vào thực tế: Giải các bài toán thực tế liên quan đến hàm số lượng giác.

Lời giải chi tiết bài 5 trang 90

Để giải bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán.
  2. Phân tích đề bài: Xác định các thông tin đã cho và các thông tin cần tìm.
  3. Vận dụng kiến thức: Sử dụng các kiến thức về hàm số lượng giác để giải quyết bài toán.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác.

Ví dụ minh họa:

Giả sử bài 5 yêu cầu vẽ đồ thị hàm số y = 2sin(x - π/3). Để vẽ đồ thị này, chúng ta cần xác định:

  • Biên độ: A = 2
  • Chu kỳ: T = 2π
  • Pha: φ = π/3

Sau đó, chúng ta có thể vẽ đồ thị hàm số bằng cách dịch chuyển đồ thị hàm số y = sin(x) sang phải π/3 đơn vị và nhân đôi biên độ.

Các lưu ý khi giải bài tập

Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức lượng giác cơ bản là nền tảng để giải các bài tập về hàm số lượng giác.
  • Hiểu rõ các phép biến đổi đồ thị: Các phép biến đổi đồ thị giúp bạn vẽ đồ thị hàm số một cách nhanh chóng và chính xác.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học toán online uy tín

Kết luận

Bài 5 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11