Bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Xét tính tăng, giảm của các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau: a) \({u_n} = n - \sqrt {{n^2} - 1} \); b) \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{{{n^2}}}\); c) \({u_n} = \frac{{{3^n} - 1}}{{{2^n}}}\).
Đề bài
Xét tính tăng, giảm của các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau:
a) \({u_n} = n - \sqrt {{n^2} - 1} \);
b) \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{{{n^2}}}\);
c) \({u_n} = \frac{{{3^n} - 1}}{{{2^n}}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về dãy số tăng, giảm để xét tính tăng giảm của dãy số: Cho dãy số \(\left( {{u_n}} \right)\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n},\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n},\forall n \in \mathbb{N}*\).
Lời giải chi tiết
a) \({u_{n + 1}} - {u_n} = \left( {n + 1} \right) - \sqrt {{{\left( {n + 1} \right)}^2} - 1} - n + \sqrt {{n^2} - 1} \)\( = 1 - \sqrt {{{\left( {n + 1} \right)}^2} - 1} - \sqrt {{n^2} - 1} < 0\forall n \in \mathbb{N}*\)
Do đó, \({u_{n + 1}} < {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
b) Ta có: \({u_1} = 0;{u_2} = \frac{3}{4};{u_3} = \frac{2}{9}\). Vì \({u_1} < {u_2};{u_2} > {u_3}\) nên dãy số \(\left( {{u_n}} \right)\) là dãy số không tăng, không giảm.
c) Ta có: \({u_{n + 1}} - {u_n} = \frac{{{3^{n + 1}} - 1}}{{{2^{n + 1}}}} - \frac{{{3^n} - 1}}{{{2^n}}}\)\( = \frac{{{3^{n + 1}} - 1 - {{2.3}^n} + 2}}{{{2^{n + 1}}}} = \frac{{{3^n} + 1}}{{{2^{n + 1}}}} > 0\forall n \in \mathbb{N}*\)
Do đó, \({u_{n + 1}} > {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh xác định các yếu tố của dãy số, tính tổng của các số hạng, hoặc tìm số hạng tổng quát của dãy số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các công thức và tính chất của dãy số, cấp số cộng và cấp số nhân.
Bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thường bao gồm các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1, chúng ta sẽ cùng nhau phân tích từng dạng bài tập và đưa ra lời giải chi tiết.
Bài tập: Cho dãy số (un) với u1 = 2 và un+1 = 2un + 1. Tính u5.
Lời giải:
Vậy u5 = 47.
Khi giải bài tập về dãy số, cấp số cộng và cấp số nhân, học sinh cần lưu ý những điều sau:
Để học tốt môn Toán 11, học sinh có thể tham khảo các tài liệu sau:
Bài 6 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán 11.