Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 10 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 11 trang 10 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho ba điểm M, N, P lần lượt là các điểm biểu diễn trên đường tròn lượng giác của các góc lượng giác có số đo \(k2\pi ,\frac{\pi }{2} + k2\pi ,\pi + k2\pi \left( {k \in \mathbb{Z}} \right)\). Tam giác MNP là tam giác gì?

Đề bài

Cho ba điểm M, N, P lần lượt là các điểm biểu diễn trên đường tròn lượng giác của các góc lượng giác có số đo \(k2\pi ,\frac{\pi }{2} + k2\pi ,\pi + k2\pi \left( {k \in \mathbb{Z}} \right)\). Tam giác MNP là tam giác gì?

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 10 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về biểu diễn góc lượng giác trên đường tròn lượng giác.

Lời giải chi tiết

Giải bài 11 trang 10 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

Vì điểm M biểu diễn trên đường lượng giác các góc lượng giác có số đo \(k2\pi \left( {k \in \mathbb{Z}} \right)\) nên \(M\left( {1;0} \right)\).

Vì điểm N biểu diễn trên đường lượng giác các góc lượng giác có số đo \(\frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\) nên \(N\left( {0;1} \right)\).

Vì điểm P biểu diễn trên đường lượng giác các góc lượng giác có số đo \(\pi + k2\pi \left( {k \in \mathbb{Z}} \right)\) nên \(P\left( { - 1;0} \right)\).

Do đó, \(PM = 2,NP = MN = \sqrt 2 \)

Vì \(M{N^2} + N{P^2} = P{M^2}\) nên tam giác MNP vuông N.

Lại có: \(NP = MN = \sqrt 2 \) nên tam giác MNP vuông cân tại N.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 11 trang 10 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về vectơ, phép cộng, trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Nội dung bài tập

Bài 11 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc phép toán vectơ để chứng minh một đẳng thức vectơ cho trước.
  • Tìm vectơ: Yêu cầu học sinh tìm một vectơ thỏa mãn các điều kiện cho trước, thường liên quan đến các vectơ đã biết và các điểm trong không gian.
  • Ứng dụng vectơ vào hình học: Yêu cầu học sinh sử dụng vectơ để chứng minh các tính chất của hình học, chẳng hạn như chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, hoặc tính diện tích hình bình hành.

Lời giải chi tiết bài 11 trang 10

Để giải bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, giúp hình dung rõ hơn về các đối tượng và mối quan hệ giữa chúng.
  3. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các vectơ và điểm trong không gian.
  4. Biểu diễn các vectơ: Biểu diễn các vectơ liên quan đến bài toán theo các vectơ đơn vị của hệ tọa độ đã chọn.
  5. Thực hiện các phép toán vectơ: Sử dụng các quy tắc phép toán vectơ để thực hiện các phép tính cần thiết, chẳng hạn như cộng, trừ vectơ, tích của một số với vectơ.
  6. Kết luận: Viết kết luận của bài toán, trình bày rõ ràng và chính xác.

Ví dụ minh họa

Bài toán: Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng vectơ AM = (1/2) * (vectơ AB + vectơ AD).

Lời giải:

Ta có: vectơ AM = vectơ AB + vectơ BM. Vì M là trung điểm của BC, nên vectơ BM = (1/2) * vectơ BC. Mà vectơ BC = vectơ AD, do đó vectơ BM = (1/2) * vectơ AD. Vậy, vectơ AM = vectơ AB + (1/2) * vectơ AD.

Mẹo giải bài tập vectơ

  • Nắm vững các định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài toán liên quan đến vectơ.
  • Sử dụng các quy tắc phép toán vectơ một cách linh hoạt: Các quy tắc này giúp đơn giản hóa các biểu thức vectơ và tìm ra lời giải.
  • Vẽ hình minh họa: Hình vẽ giúp hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 11 trang 10 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11