Bài 5 trang 102 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh tính đạo hàm, tìm cực trị, và vẽ đồ thị hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 102, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một hộp đựng 10 tấm thẻ màu trắng được đánh số từ 1 đến 10 và 5 tấm thẻ màu xanh được đánh số từ 1 đến 5. a) “Hai thẻ lấy ra có cùng màu”. b) “Có ít nhất 1 thẻ màu trắng và ghi số chẵn trong hai thẻ lấy ra”.
Đề bài
Một hộp đựng 10 tấm thẻ màu trắng được đánh số từ 1 đến 10 và 5 tấm thẻ màu xanh được đánh số từ 1 đến 5. Các tấm thẻ có cùng kích thước và khối lượng. Rút ra ngẫu nhiên 2 tấm thẻ từ trong hộp. Tính xác suất của các biến cố:
a) “Hai thẻ lấy ra có cùng màu”.
b) “Có ít nhất 1 thẻ màu trắng và ghi số chẵn trong hai thẻ lấy ra”.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính xác suất của biến cố.
Lời giải chi tiết
Không gian mẫu: “Rút ra ngẫu nhiên 2 tấm thẻ từ trong hộp”
Số phần tử của không gian mẫu là: \(C_{15}^2\)
a) Số cách chọn ra 2 tấm thẻ có cùng màu trắng là: \(C_{10}^2\)
Số cách chọn ra 2 tấm thẻ có cùng màu xanh là: \(C_5^2\)
Số cách chọn ra 2 tấm thẻ có cùng màu là: \(C_{10}^2 + C_5^2\)
Xác suất của biến cố “Hai thẻ lấy ra có cùng màu” là: \(\frac{{C_{10}^2 + C_5^2}}{{C_{15}^2}} = \frac{{11}}{{21}}\)
b) Trường hợp 1: Rút ra 1 tấm thẻ màu trắng chẵn, 1 thẻ trong 10 thẻ còn lại.
Số cách chọn là: \(C_5^1.C_{10}^1\)
Trường hợp 2: Rút ra 2 tấm thẻ màu trắng chẵn
Số cách chọn là: \(C_5^2\)
Số cách chọn của biến cố “Có ít nhất 1 thẻ màu trắng và ghi số chẵn trong hai thẻ lấy ra” là: \(P = \frac{{C_5^1.C_{10}^1 + C_5^2}}{{C_{15}^2}} = \frac{4}{7}\)
Bài 5 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2 tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Cụ thể, bài tập này thường yêu cầu học sinh:
Để giải quyết bài 5 trang 102 một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Phương pháp giải bài tập này thường bao gồm các bước sau:
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và vẽ đồ thị.)
y' = 3x2 - 6x
Giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Xét khoảng (-∞; 0): Chọn x = -1, y' = 3(-1)2 - 6(-1) = 9 > 0 => Hàm số đồng biến trên (-∞; 0)
Xét khoảng (0; 2): Chọn x = 1, y' = 3(1)2 - 6(1) = -3 < 0 => Hàm số nghịch biến trên (0; 2)
Xét khoảng (2; +∞): Chọn x = 3, y' = 3(3)2 - 6(3) = 9 > 0 => Hàm số đồng biến trên (2; +∞)
Tại x = 0, y' đổi dấu từ dương sang âm => Hàm số đạt cực đại tại x = 0, y = 2
Tại x = 2, y' đổi dấu từ âm sang dương => Hàm số đạt cực tiểu tại x = 2, y = -2
Giao điểm với trục Oy: x = 0 => y = 2 (0; 2)
Giao điểm với trục Ox: y = 0 => x3 - 3x2 + 2 = 0 => (x - 1)(x2 - 2x - 2) = 0 => x = 1 hoặc x = 1 ± √3
=> Các giao điểm với trục Ox: (1; 0), (1 + √3; 0), (1 - √3; 0)
(Mô tả cách vẽ đồ thị dựa trên các thông tin đã phân tích)
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 2 hoặc các đề thi thử Toán 11.
Bài 5 trang 102 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.