Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 90 trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Chúng tôi cam kết giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán.
Xét tính liên tục của hàm số: a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = - 1\); b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x - 1} \right|}}{{x - 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).
Đề bài
Xét tính liên tục của hàm số:
a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = - 1\);
b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x - 1} \right|}}{{x - 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết
a) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm \( - 1\).
Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {x + 1} \right) = - 1 + 1 = 0;\) \(f\left( { - 1} \right) = \left| { - 1 + 1} \right| = 0\);
\(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - x - 1} \right) = 1 - 1 = 0\)
Vì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = f\left( { - 1} \right) = 0\) nên hàm số f(x) liên tục tại điểm \(x = - 1\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm 1.
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left| {x - 1} \right|}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} 1 = 1;\) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - 1} \right) = - 1\)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right)\) nên hàm số g(x) không liên tục tại điểm \(x = 1\).
Bài 3 trang 90 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 3 trang 90 một cách hiệu quả, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng câu hỏi. Hướng dẫn này sẽ bao gồm:
Ví dụ 1: Xác định tập xác định của hàm số y = tan(2x + π/3).
Giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Suy ra 2x ≠ π/6 + kπ, hay x ≠ π/12 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.
Để giải nhanh các bài tập về hàm số lượng giác, bạn nên:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng hướng dẫn giải bài 3 trang 90 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 này sẽ giúp bạn hiểu rõ hơn về hàm số lượng giác và tự tin giải quyết các bài toán liên quan. Chúc bạn học tập tốt!
Công thức | Mô tả |
---|---|
sin(a + b) | sin(a)cos(b) + cos(a)sin(b) |
cos(a + b) | cos(a)cos(b) - sin(a)sin(b) |