Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 90 trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Chúng tôi cam kết giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán.

Xét tính liên tục của hàm số: a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = - 1\); b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x - 1} \right|}}{{x - 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).

Đề bài

Xét tính liên tục của hàm số:

a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = - 1\);

b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x - 1} \right|}}{{x - 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết

a) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm \( - 1\).

Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {x + 1} \right) = - 1 + 1 = 0;\) \(f\left( { - 1} \right) = \left| { - 1 + 1} \right| = 0\);

\(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - x - 1} \right) = 1 - 1 = 0\)

Vì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = f\left( { - 1} \right) = 0\) nên hàm số f(x) liên tục tại điểm \(x = - 1\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm 1.

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left| {x - 1} \right|}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} 1 = 1;\) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - 1} \right) = - 1\)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right)\) nên hàm số g(x) không liên tục tại điểm \(x = 1\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán học. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 3 trang 90 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài 3 trang 90

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của hàm số lượng giác: Tìm tập xác định, tập giá trị, chu kỳ, tính đối xứng, và các điểm đặc biệt của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các kiến thức về biến đổi đồ thị để vẽ đồ thị của hàm số.
  • Giải phương trình lượng giác: Vận dụng các công thức lượng giác và kỹ năng biến đổi để giải phương trình.
  • Ứng dụng hàm số lượng giác vào thực tế: Giải các bài toán liên quan đến các hiện tượng thực tế, ví dụ như bài toán về dao động điều hòa.

Hướng dẫn giải chi tiết bài 3 trang 90

Để giúp bạn giải bài 3 trang 90 một cách hiệu quả, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng câu hỏi. Hướng dẫn này sẽ bao gồm:

  1. Phân tích đề bài: Xác định rõ yêu cầu của đề bài và các thông tin đã cho.
  2. Lựa chọn phương pháp giải: Chọn phương pháp giải phù hợp với từng dạng bài tập.
  3. Thực hiện giải bài: Thực hiện các bước giải một cách chính xác và rõ ràng.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Xác định tập xác định của hàm số y = tan(2x + π/3).

Giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Suy ra 2x ≠ π/6 + kπ, hay x ≠ π/12 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.

Mẹo giải nhanh

Để giải nhanh các bài tập về hàm số lượng giác, bạn nên:

  • Nắm vững các công thức lượng giác cơ bản.
  • Sử dụng các tính chất đối xứng và chu kỳ của hàm số lượng giác.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 1 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1
  • Bài 2 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1
  • Bài 4 trang 90 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Kết luận

Hy vọng rằng hướng dẫn giải bài 3 trang 90 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 này sẽ giúp bạn hiểu rõ hơn về hàm số lượng giác và tự tin giải quyết các bài toán liên quan. Chúc bạn học tập tốt!

Công thứcMô tả
sin(a + b)sin(a)cos(b) + cos(a)sin(b)
cos(a + b)cos(a)cos(b) - sin(a)sin(b)

Tài liệu, đề thi và đáp án Toán 11