Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 43 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 43 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{x}{{\sin x - \cos x}}\);

b) \(y = \frac{{\sin x}}{x}\);

c) \(y = \sin x - \frac{1}{3}{\sin ^3}x;\)

d) \(y = \cos \left( {2\sin x} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính:

a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\cos x} \right)' = - \sin x\), \(x' = 1\)

b) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(x' = 1\)

c) \(\left( {u - v} \right)' = u' - v'\), \({\left[ {u\left( x \right)} \right]^\alpha } = \alpha {\left[ {u\left( x \right)} \right]^\alpha }\left[ {u\left( x \right)} \right]'\)

d) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

Lời giải chi tiết

a) \(y' \) \( = {\left( {\frac{x}{{\sin x - \cos x}}} \right)'} \) \( = \frac{{x'\left( {\sin x - \cos x} \right) - x\left( {\sin x - \cos x} \right)'}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)

\( \) \( = \frac{{\sin x - \cos x - x\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)

b) \(y' \) \( = {\left( {\frac{{\sin x}}{x}} \right)'} \) \( = \frac{{\left( {\sin x} \right)'x - x'\sin x}}{{{x^2}}} \) \( = \frac{{x\cos x - \sin x}}{{{x^2}}}\);

c) \(y' \) \( = {\left( {\sin x - \frac{1}{3}{{\sin }^3}x} \right)'} \) \( = \cos x - \frac{1}{3}.3{\sin ^2}x\left( {\sin x} \right)' \) \( = \cos x - {\sin ^2}x\cos x\)

\( \) \( = \cos x\left( {1 - {{\sin }^2}x} \right) \) \( = {\cos ^3}x\);

d) \(y' \) \( = \left[ {\cos \left( {2\sin x} \right)} \right]' \) \( = - \left( {2\sin x} \right)'.\sin \left( {2\sin x} \right) \) \( = - 2\cos x.\sin \left( {2\sin x} \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4 trang 43 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 4 trang 43 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 4 trang 43 bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến vận tốc, gia tốc.

Lời giải chi tiết bài 4 trang 43

Câu a)

Để giải câu a, ta cần tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1 tại điểm x = 2. Sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 3x^2 - 6x + 2

Thay x = 2 vào f'(x), ta được:

f'(2) = 3(2)^2 - 6(2) + 2 = 12 - 12 + 2 = 2

Vậy, đạo hàm của hàm số tại x = 2 là 2.

Câu b)

Để giải câu b, ta cần tìm đạo hàm của hàm số g(x) = (x^2 + 1)(x - 3). Sử dụng quy tắc đạo hàm của tích, ta có:

g'(x) = (2x)(x - 3) + (x^2 + 1)(1) = 2x^2 - 6x + x^2 + 1 = 3x^2 - 6x + 1

Vậy, đạo hàm của hàm số là 3x^2 - 6x + 1.

Câu c)

Để giải câu c, ta cần tìm đạo hàm của hàm số h(x) = sin(2x). Sử dụng quy tắc đạo hàm của hàm hợp, ta có:

h'(x) = cos(2x) * 2 = 2cos(2x)

Vậy, đạo hàm của hàm số là 2cos(2x).

Mở rộng kiến thức

Để hiểu sâu hơn về đạo hàm, các em có thể tham khảo thêm các kiến thức sau:

  • Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi đối số tiến tới x0.
  • Các quy tắc đạo hàm cơ bản: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Ứng dụng của đạo hàm: Tìm cực trị của hàm số, khảo sát hàm số, giải các bài toán liên quan đến vận tốc, gia tốc.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về đạo hàm, các em có thể làm thêm các bài tập sau:

  1. Tính đạo hàm của hàm số f(x) = x^4 - 5x^2 + 3x - 2 tại điểm x = 1.
  2. Tìm đạo hàm của hàm số g(x) = (x + 2)(x^2 - 1).
  3. Tìm đạo hàm của hàm số h(x) = cos(3x).

Kết luận

Hy vọng với lời giải chi tiết và những kiến thức mở rộng trên, các em đã hiểu rõ cách giải bài 4 trang 43 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 11