Logo Header
  1. Môn Toán
  2. Giải bài 15 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 15 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 15 trang 73 Sách bài tập Toán 10 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 15 trang 73 sách bài tập Toán 10 - Kết nối tri thức. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng toạ độ. Theo đó, tại thời điểm \(t(0 \le t \le 180)\), vật thể có vị trí toạ độ \(\left( {4\cos t^\circ ;{\rm{ }}3\sin t^\circ } \right)\).

Đề bài

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng toạ độ. Theo đó, tại thời điểm \(t(0 \le t \le 180)\), vật thể có vị trí toạ độ \(\left( {4\cos t^\circ ;{\rm{ }}3\sin t^\circ } \right)\). 

a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.

b) Tìm quỹ đạo chuyển động của vật thể.

Lời giải chi tiết

a) Vị trí ban đầu của vật thể ứng với t = 0 => Vật thể ở vị trí có toạ độ là \({A_1} = \left( {4\cos 0^\circ ;{\rm{ }}3\sin 0^\circ } \right) = \left( {4;0} \right).\)

Vị trí kết thúc của vật thể ứng với t = 180 => Vật thể ở vị trí có toạ độ là \({A_2} = \left( {4\cos {{180}^ \circ };{\rm{ }}3\sin {{180}^ \circ }} \right) = \left( { - 4;0} \right).\)

b) Từ đẳng thức \(\left( {4\cos t^\circ ;{\rm{ }}3\sin t^\circ } \right)\) là toạ độ của vật thể M, ta có \({\left( {\frac{{{y_M}}}{3}} \right)^2} + {\left( {\frac{{{x_M}}}{4}} \right)^2} = 1 \Leftrightarrow \frac{{x_M^2}}{{16}} + \frac{{y_M^2}}{9} = 1\)

Do đó vật thể chuyển động trên đường elip (E) có phương trình \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)

Khi thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [-1; 1].

 \( \Rightarrow 4\cos t^\circ \in \;\left[ { - 4;4} \right]\) và \(3\sin t^\circ \in \;\left[ {0;{\rm{ }}3} \right].\)

Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường elip (E) nằm trên trục hoành.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 15 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 15 trang 73 Sách bài tập Toán 10 - Kết nối tri thức: Tổng quan

Bài 15 trang 73 sách bài tập Toán 10 - Kết nối tri thức tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các tính chất liên quan để giải quyết các bài toán hình học và đại số. Bài tập thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc xác định mối quan hệ giữa các vectơ trong một hình học cụ thể.

Nội dung chi tiết bài 15

Bài 15 bao gồm một loạt các câu hỏi và bài tập khác nhau, được chia thành các phần nhỏ để học sinh dễ dàng tiếp cận và giải quyết. Các dạng bài tập chính bao gồm:

  • Chứng minh đẳng thức vectơ: Yêu cầu học sinh sử dụng các quy tắc cộng, trừ, nhân vectơ với một số thực, và các tính chất của vectơ để chứng minh một đẳng thức cho trước.
  • Tìm tọa độ của vectơ: Yêu cầu học sinh xác định tọa độ của một vectơ dựa trên tọa độ của các điểm đầu và điểm cuối của vectơ đó.
  • Xác định mối quan hệ giữa các vectơ: Yêu cầu học sinh xác định xem hai vectơ có cùng phương, ngược phương, hoặc vuông góc hay không.
  • Ứng dụng vectơ vào hình học: Yêu cầu học sinh sử dụng vectơ để giải quyết các bài toán liên quan đến hình học phẳng, chẳng hạn như chứng minh tính chất của các hình đa giác, tìm tâm của đường tròn, hoặc tính diện tích của một hình.

Hướng dẫn giải chi tiết từng bài tập

Bài 15.1

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Lời giải:

Vì M là trung điểm của BC, ta có overrightarrow{BM} =overrightarrow{MC}. Theo quy tắc cộng vectơ, ta có:

overrightarrow{AB} +overrightarrow{AC} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{MC} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{BC} -overrightarrow{BM} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{BC} -overrightarrow{MC} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{BC} -overrightarrow{BM} = 2overrightarrow{AM}

Do đó, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm)

Bài 15.2

Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: overrightarrow{OA} +overrightarrow{OB} +overrightarrow{OC} +overrightarrow{OD} =overrightarrow{0}

Lời giải:

Vì ABCD là hình bình hành, ta có overrightarrow{AB} =overrightarrow{DC}overrightarrow{AD} =overrightarrow{BC}. O là giao điểm của hai đường chéo, nên O là trung điểm của AC và BD. Do đó:

overrightarrow{OA} = -overrightarrow{OC}overrightarrow{OB} = -overrightarrow{OD}

Suy ra: overrightarrow{OA} +overrightarrow{OB} +overrightarrow{OC} +overrightarrow{OD} =overrightarrow{OA} +overrightarrow{OB} -overrightarrow{OA} -overrightarrow{OB} =overrightarrow{0} (đpcm)

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững các quy tắc cộng, trừ, nhân vectơ: Đây là nền tảng cơ bản để giải quyết mọi bài toán liên quan đến vectơ.
  • Sử dụng hình vẽ minh họa: Hình vẽ giúp bạn hình dung rõ hơn về mối quan hệ giữa các vectơ và tìm ra hướng giải quyết.
  • Biến đổi vectơ một cách linh hoạt: Sử dụng các tính chất của vectơ để biến đổi các biểu thức vectơ một cách phù hợp.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Kết luận

Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải quyết bài 15 trang 73 sách bài tập Toán 10 - Kết nối tri thức. Hãy luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán vectơ nhé!

Tài liệu, đề thi và đáp án Toán 10