Logo Header
  1. Môn Toán
  2. Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.14 trang 54 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.14 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.14 trang 54, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau

Đề bài

Cho tam giác \(OAB\) vuông cân, với \(OA = OB = a.\) Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\,\,\overrightarrow {OA} - \overrightarrow {OB} ,\,\,\overrightarrow {OA} + 2\overrightarrow {OB} ,\,\,2\overrightarrow {OA} - 3\overrightarrow {OB} .\)

Phương pháp giải - Xem chi tiếtGiải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Gọi \(D\) là điểm đối xứng với \(O\) qua \(B,\) \(F\) là điểm đối xứng với \(B\) qua \(D\) và \(G\) là điểm đối xứng với \(O\) qua \(A.\)

- Vẽ hình vuông \(OACB\) và hình chữ nhật \(OAED\)

Lời giải chi tiết

Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 2

+) Theo quy tắc hình bình hành, \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} \) với C là đỉnh thứ tư của hình bình hành \(OACB\)

Ta có: tứ giác \(OACB\) là hình bình hành

mặt khác \(\Delta OAB\) vuông cân tại \(A\)

nên tứ giác \(OACB\) là hình bình hành

\( \Rightarrow \) \(\left| {\overrightarrow {OC} } \right| = OC = \sqrt {O{A^2} + O{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

+) Ta có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \)

Xét \(\Delta OAB\) vuông cân tại \(O\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {AB} } \right| = AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

+) Gọi điểm \(D\) là điểm đối xứng với \(O\) qua \(B\)

\( \Rightarrow \) \(2\overrightarrow {OB} = \overrightarrow {OD} \) và \(OD = 2a.\)

Theo quy tắc hình bình hành, ta có: \(\overrightarrow {OA} + 2\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OD} = \overrightarrow {OE} \) với \(E\) là điểm thứ tư của hình bình hành \(OAED\)

Ta có: tứ giác \(OAED\) là hình bình hành

Mặt khác \(\widehat {DOA} = {90^ \circ }\)

Nên tứ giác \(OAED\) là hình chữ nhật

Xét hình chữ nhật \(OAED\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {OE} } \right| = OE = \sqrt {O{A^2} + O{D^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)

+) Lấy điểm \(F\) đối xứng với \(B\) qua \(D\) và \(G\) đối xứng với \(O\) qua \(A\)

\( \Rightarrow \) \(2\overrightarrow {OA} = \overrightarrow {OG} ,\) \(3\overrightarrow {OB} = \overrightarrow {OF} ,\) \(OG = 2a,\)\(OF = 3a\)

Ta có: \(2\overrightarrow {OA} - 3\overrightarrow {OB} = \overrightarrow {OG} - \overrightarrow {OF} = \overrightarrow {FG} \)

Xét \(\Delta OFG\) vuông tại \(O\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {FG} } \right| = FG = \sqrt {O{F^2} + O{G^2}} = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {2a} \right)}^2}} = a\sqrt {13} \)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.14 trang 54 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.14 trang 54 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để tính góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về đường thẳng, tam giác, hình vuông, hình chữ nhật,...

Phân tích bài toán:

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp.

Lời giải chi tiết:

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 4.14 trang 54, chúng ta sẽ cùng nhau đi qua lời giải chi tiết sau đây:

(Ở đây sẽ là lời giải chi tiết bài toán 4.14 trang 54, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình vẽ nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.)

Ví dụ minh họa:

Để giúp các em học sinh hiểu rõ hơn về ứng dụng của vectơ trong hình học, chúng ta sẽ cùng nhau xem xét một ví dụ minh họa sau đây:

(Ở đây sẽ là một ví dụ minh họa liên quan đến vectơ và ứng dụng trong hình học, giúp học sinh hiểu rõ hơn về cách vận dụng kiến thức đã học để giải quyết các bài toán thực tế.)

Luyện tập:

Để củng cố kiến thức và kỹ năng giải toán, các em học sinh có thể tự giải các bài tập tương tự sau đây:

  1. Bài 4.15 trang 54 sách bài tập Toán 10 Kết nối tri thức
  2. Bài 4.16 trang 54 sách bài tập Toán 10 Kết nối tri thức
  3. Bài 4.17 trang 55 sách bài tập Toán 10 Kết nối tri thức

Kết luận:

Bài 4.14 trang 54 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng rằng, với lời giải chi tiết và ví dụ minh họa trên đây, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10