Bài 7.11 trang 38 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.11 trang 38, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tính góc giữa các cặp đường thẳng sau:
Đề bài
Tính góc giữa các cặp đường thẳng sau:
a) \(d:y - 1 = 0\) và \(k:x - y + 4 = 0\).
b) \(a:\left\{ \begin{array}{l}x = 3 + t\\y = 2t\end{array} \right.\) và \(b:3x + y + 1 = 0\).
c) \(m:\left\{ \begin{array}{l}x = 1 - t\\y = 2 - \sqrt 3 t\end{array} \right.\) và \(n:\left\{ \begin{array}{l}x = 4 - t'\\y = \sqrt 3 t'\end{array} \right.\).
Phương pháp giải - Xem chi tiết
\(\left( {a;b} \right)\) và \(\left( {c;d} \right)\) cùng là vectơ pháp tuyến hoặc chỉ phương của hai đường thẳng \({d_1}\) và \({d_2}\). Góc giữa hai đường thẳng này được tính thông qua công thức: \(cos\varphi = \frac{{\left| {ac + bd} \right|}}{{\sqrt {{a^2} + {b^2}} \sqrt {{c^2} + {d^2}} }}\).
Lời giải chi tiết
a) Vectơ pháp tuyến của hai đường thẳng lần lượt là \(\left( {0;1} \right)\) và \(\left( {1; - 1} \right)\).
\(cos\varphi = \frac{{\left| {1.0 + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{0^2} + {1^2}} \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \varphi = {45^ \circ }\).
b) Vectơ chỉ phương của hai đường thẳng lần lượt là \(\left( {1;2} \right)\) và \(\left( {1; - 3} \right)\).
\(cos\varphi = \frac{{\left| {1.1 + 2.\left( { - 3} \right)} \right|}}{{\sqrt {{1^2} + {2^2}} \sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{5}{{\sqrt 5 \sqrt {10} }} = \frac{\sqrt 2}{2} \Rightarrow \varphi = {45^ \circ }\).
c) Vectơ chỉ phương của hai đường thẳng lần lượt là \(\left( {1;\sqrt 3 } \right)\) và \(\left( {1; - \sqrt 3 } \right)\).
\(cos\varphi = \frac{{\left| {1.1 + \sqrt 3 .\left( { - \sqrt 3 } \right)} \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} \sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} }} = \frac{2}{{2.2}} = \frac{1}{2} \Rightarrow \varphi = {60^ \circ }\).
Bài 7.11 trang 38 sách bài tập Toán 10 - Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ, thường là xác định mối quan hệ giữa các vectơ hoặc tính toán các đại lượng hình học sử dụng vectơ. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích bài toán để tìm ra mối liên hệ giữa các yếu tố đã cho và yêu cầu của bài toán. Việc vẽ hình minh họa có thể giúp học sinh hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
(Giả sử bài toán cụ thể là: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2)
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}
Áp dụng quy tắc cộng vectơ, ta có:
overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}
Thay overrightarrow{BM} =overrightarrow{MC} vào, ta được:
overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}
Lại có: overrightarrow{AC} =overrightarrow{AM} +overrightarrow{MC} => overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM}
Thay overrightarrow{MC} =overrightarrow{AC} -overrightarrow{AM} vào overrightarrow{AM} =overrightarrow{AB} +overrightarrow{MC}, ta được:
overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AM}
Chuyển vế, ta có: 2overrightarrow{AM} =overrightarrow{AB} +overrightarrow{AC}
Suy ra: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm)
Để củng cố kiến thức về vectơ và ứng dụng trong hình học, học sinh có thể giải thêm các bài tập tương tự như:
Khi giải bài tập về vectơ, học sinh cần lưu ý:
Bài 7.11 trang 38 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản, phân tích bài toán một cách cẩn thận và áp dụng các quy tắc một cách chính xác, học sinh có thể giải quyết bài tập này một cách hiệu quả.