Logo Header
  1. Môn Toán
  2. Giải bài 8.36 trang 60 SBT toán 10 - Kết nối tri thức

Giải bài 8.36 trang 60 SBT toán 10 - Kết nối tri thức

Giải bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức

Bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tính \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\).

Đề bài

Tính \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\).

Phương pháp giải - Xem chi tiếtGiải bài 8.36 trang 60 SBT toán 10 - Kết nối tri thức 1

 Áp dụng công thức khai triển \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).

Lời giải chi tiết

 Ta có: \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\)

\(\begin{array}{l} = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - \left[ {{{\left( {\sqrt 3 } \right)}^5} + 5{{\left( {\sqrt 3 } \right)}^4}\left( { - \sqrt 2 } \right) + 10{{\left( {\sqrt 3 } \right)}^3}{{\left( { - \sqrt 2 } \right)}^2} + 10{{\left( {\sqrt 3 } \right)}^2}{{\left( { - \sqrt 2 } \right)}^3} + 5.\left( {\sqrt 3 } \right){{\left( { - \sqrt 2 } \right)}^4} + {{\left( { - \sqrt 2 } \right)}^5}} \right]\\ = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - \left[ {{{\left( {\sqrt 3 } \right)}^5} - 5{{\left( {\sqrt 3 } \right)}^4}\left( {\sqrt 2 } \right) + 10{{\left( {\sqrt 3 } \right)}^3}{{\left( {\sqrt 2 } \right)}^2} - 10{{\left( {\sqrt 3 } \right)}^2}{{\left( {\sqrt 2 } \right)}^3} + 5.\left( {\sqrt 3 } \right){{\left( {\sqrt 2 } \right)}^4} - {{\left( {\sqrt 2 } \right)}^5}} \right]\\ = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) - 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} - 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ = 10{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 20{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 2{\left( {\sqrt 2 } \right)^5}\\ = 10.9.\sqrt 2 + 20.3.2.\sqrt 2 + 2.4.\sqrt 2 \\ = 218\sqrt 2 \end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 8.36 trang 60 SBT toán 10 - Kết nối tri thức đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Ứng dụng của vectơ: Biểu diễn các điểm, đường thẳng, đoạn thẳng bằng vectơ.

Dưới đây là lời giải chi tiết bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức:

Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho tam giác ABC, tìm vectơ AB + AC)

Lời giải:

  1. Phân tích đề bài: Xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  2. Vẽ hình: Vẽ hình minh họa để dễ dàng hình dung bài toán.
  3. Áp dụng kiến thức: Sử dụng các công thức và định lý liên quan đến vectơ để giải quyết bài toán.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả thu được là hợp lý và chính xác.

Ví dụ minh họa:

Giả sử đề bài là: Cho tam giác ABC, tìm vectơ AB + AC.

Ta có: Vectơ AB + AC = Vectơ AD, trong đó D là đỉnh thứ tư của hình bình hành ABCD.

Do đó, để tìm vectơ AB + AC, ta cần xác định vị trí của điểm D.

Lưu ý:

  • Khi giải các bài toán về vectơ, cần chú ý đến chiều của vectơ và hướng của vectơ.
  • Sử dụng hình vẽ minh họa để dễ dàng hình dung bài toán và tìm ra lời giải.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Các bài tập tương tự

Để củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, các em học sinh có thể tham khảo các bài tập tương tự sau:

  • Bài 8.37 trang 60 SBT Toán 10 - Kết nối tri thức
  • Bài 8.38 trang 61 SBT Toán 10 - Kết nối tri thức
  • Bài 8.39 trang 61 SBT Toán 10 - Kết nối tri thức

Tài liệu tham khảo

Các em học sinh có thể tham khảo thêm các tài liệu sau để nắm vững kiến thức về vectơ:

  • Sách giáo khoa Toán 10 - Kết nối tri thức
  • Sách bài tập Toán 10 - Kết nối tri thức
  • Các trang web học toán online uy tín

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức sẽ giúp các em học sinh học tập tốt hơn và đạt kết quả cao trong môn Toán.

Ngoài ra, Giaitoan.edu.vn còn cung cấp lời giải chi tiết cho nhiều bài tập Toán 10 khác. Các em học sinh có thể truy cập website để tham khảo.

Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10