Bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tính \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\).
Đề bài
Tính \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức khai triển \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).
Lời giải chi tiết
Ta có: \({\left( {\sqrt 3 + \sqrt 2 } \right)^5} - {\left( {\sqrt 3 - \sqrt 2 } \right)^5}\)
\(\begin{array}{l} = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - \left[ {{{\left( {\sqrt 3 } \right)}^5} + 5{{\left( {\sqrt 3 } \right)}^4}\left( { - \sqrt 2 } \right) + 10{{\left( {\sqrt 3 } \right)}^3}{{\left( { - \sqrt 2 } \right)}^2} + 10{{\left( {\sqrt 3 } \right)}^2}{{\left( { - \sqrt 2 } \right)}^3} + 5.\left( {\sqrt 3 } \right){{\left( { - \sqrt 2 } \right)}^4} + {{\left( { - \sqrt 2 } \right)}^5}} \right]\\ = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - \left[ {{{\left( {\sqrt 3 } \right)}^5} - 5{{\left( {\sqrt 3 } \right)}^4}\left( {\sqrt 2 } \right) + 10{{\left( {\sqrt 3 } \right)}^3}{{\left( {\sqrt 2 } \right)}^2} - 10{{\left( {\sqrt 3 } \right)}^2}{{\left( {\sqrt 2 } \right)}^3} + 5.\left( {\sqrt 3 } \right){{\left( {\sqrt 2 } \right)}^4} - {{\left( {\sqrt 2 } \right)}^5}} \right]\\ = {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ - {\left( {\sqrt 3 } \right)^5} + 5{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) - 10{\left( {\sqrt 3 } \right)^3}{\left( {\sqrt 2 } \right)^2} + 10{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} - 5.\left( {\sqrt 3 } \right){\left( {\sqrt 2 } \right)^4} + {\left( {\sqrt 2 } \right)^5}\\ = 10{\left( {\sqrt 3 } \right)^4}\left( {\sqrt 2 } \right) + 20{\left( {\sqrt 3 } \right)^2}{\left( {\sqrt 2 } \right)^3} + 2{\left( {\sqrt 2 } \right)^5}\\ = 10.9.\sqrt 2 + 20.3.2.\sqrt 2 + 2.4.\sqrt 2 \\ = 218\sqrt 2 \end{array}\)
Bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Dưới đây là lời giải chi tiết bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức:
Đề bài: (Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho tam giác ABC, tìm vectơ AB + AC)
Lời giải:
Ví dụ minh họa:
Giả sử đề bài là: Cho tam giác ABC, tìm vectơ AB + AC.
Ta có: Vectơ AB + AC = Vectơ AD, trong đó D là đỉnh thứ tư của hình bình hành ABCD.
Do đó, để tìm vectơ AB + AC, ta cần xác định vị trí của điểm D.
Lưu ý:
Để củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, các em học sinh có thể tham khảo các bài tập tương tự sau:
Các em học sinh có thể tham khảo thêm các tài liệu sau để nắm vững kiến thức về vectơ:
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 8.36 trang 60 SBT Toán 10 - Kết nối tri thức sẽ giúp các em học sinh học tập tốt hơn và đạt kết quả cao trong môn Toán.
Ngoài ra, Giaitoan.edu.vn còn cung cấp lời giải chi tiết cho nhiều bài tập Toán 10 khác. Các em học sinh có thể truy cập website để tham khảo.
Chúc các em học tập tốt!