Bài 4.7 trang 50 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.7 trang 50, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hai vectơ không cùng phương. Chứng minh rằng
Đề bài
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Chứng minh rằng
\(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\)
Phương pháp giải - Xem chi tiết
- Gọi điểm \(O\) bất kỳ, \(\overrightarrow {OA} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow b \)
- Tính \(\overrightarrow {OB} \)
- Áp dụng bất đẳng thức tam giác
Lời giải chi tiết
Gọi điểm \(O\) bất kỳ, vẽ vectơ \(\overrightarrow {OA} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow b \)
\( \Rightarrow \) \(\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {AB} = \overrightarrow a + \overrightarrow b \)
Vì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương nên \(O,\,\,A,\,\,B\) không thẳng hàng.
Xét \(\Delta ABC,\) áp dụng bất đẳng thức tam giác ta có:
\(\begin{array}{l}OA - AB < OB < OA + AB\\ \Leftrightarrow \left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\end{array}\)
Bài 4.7 trang 50 sách bài tập Toán 10 Kết nối tri thức thường xoay quanh việc sử dụng các phép toán vectơ để chứng minh các tính chất hình học hoặc giải quyết các bài toán liên quan đến vị trí tương đối của các điểm. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các dữ kiện đã cho. Sau đó, cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Một số phương pháp thường được sử dụng để giải bài tập về vectơ bao gồm:
(Giả sử bài toán cụ thể là: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2)
Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM}
Vì M là trung điểm của BC nên overrightarrow{BM} =overrightarrow{MC} và overrightarrow{BC} = 2overrightarrow{BM}
Ta cũng có: overrightarrow{AC} =overrightarrow{AB} +overrightarrow{BC}
Suy ra: overrightarrow{BC} =overrightarrow{AC} -overrightarrow{AB}
Do đó: overrightarrow{BM} = (overrightarrow{AC} -overrightarrow{AB})/2
Thay vào đẳng thức ban đầu, ta được: overrightarrow{AM} =overrightarrow{AB} + (overrightarrow{AC} -overrightarrow{AB})/2 = (2overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AB})/2 = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm)
Để nắm vững kiến thức về vectơ và ứng dụng trong hình học, học sinh nên luyện tập thêm các bài tập tương tự. Giaitoan.edu.vn cung cấp một kho bài tập phong phú, đa dạng với lời giải chi tiết, giúp các em học sinh củng cố kiến thức và nâng cao kỹ năng giải toán.
Bài 4.7 trang 50 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.