Bài 6.27 trang 19 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh sử dụng các tính chất của vectơ, các phép toán vectơ để chứng minh các đẳng thức vectơ hoặc giải các bài toán liên quan đến hình học phẳng.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.27 trang 19 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
Đề bài
Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\({b^2}{x^2} - ({b^2} + {c^2} - {a^2})x + {c^2} > 0,\forall x \in \mathbb{R}\)
Phương pháp giải - Xem chi tiết
Bước 1: Tính giá trị của ∆
Bước 2: Áp dụng bất đẳng thức tam giác để chứng minh ∆ < 0
Bước 3: Kết luận
Lời giải chi tiết
Tam thức bậc hai \({b^2}{x^2} - ({b^2} + {c^2} - {a^2})x + {c^2}\) có ∆ = \({({b^2} + {c^2} - {a^2})^2} - 4{b^2}{c^2}\)
\( = ({b^2} + {c^2} - {a^2} - 2bc)({b^2} + {c^2} - {a^2} + 2bc)\)
\( = \left[ {{{(b - c)}^2} - {a^2}} \right]\left[ {{{(b + c)}^2} - {a^2}} \right]\)
\( = (b - c - a)(b - c + a)(b + c - a)(b + c + a)\)
\( = - (a + c - b)(a + b - c)(b + c - a)(a + b + c)\)
Do a, b, c là độ dài 3 cạnh của một tam giác nên a > 0, b > 0, c > 0 và a + b + c > 0
Theo bất đẳng thức tam giác ta có:
\(\begin{array}{l}a + b > c \Leftrightarrow a + b - c > 0\\b + c > a \Leftrightarrow b + c - a > 0\\a + c > b \Leftrightarrow a + c - b > 0\end{array}\)
Do đó \((a + c - b)(a + b - c)(b + c - a)(a + b + c) > 0\) \( \Rightarrow - (a + c - b)(a + b - c)(b + c - a)(a + b + c) < 0\)
\( \Rightarrow \Delta < 0\) với mọi a, b, c là độ dài 3 cạnh của một tam giác
Vì hệ số a = b2 > 0 và ∆ < 0 nên BPT \({b^2}{x^2} - ({b^2} + {c^2} - {a^2})x + {c^2} > 0\) nghiệm đúng \(\forall x \in \mathbb{R}\)
Vậy \({b^2}{x^2} - ({b^2} + {c^2} - {a^2})x + {c^2} > 0,\forall x \in \mathbb{R}\)
Bài 6.27 trang 19 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán điển hình về ứng dụng của vectơ trong hình học. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Dưới đây là lời giải chi tiết bài 6.27 trang 19 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống:
Đề bài: (Nội dung đề bài cụ thể sẽ được điền vào đây, ví dụ: Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2)
Lời giải:
Lưu ý:
Các bài tập tương tự:
Để củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Tổng kết:
Bài 6.27 trang 19 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin giải bài tập và nắm vững kiến thức Toán 10.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!