Logo Header
  1. Môn Toán
  2. Giải bài 7.27 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 7.27 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 7.27 trang 42 Sách bài tập Toán 10 - Kết nối tri thức

Bài 7.27 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.27 trang 42, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Vị trí của một chất điểm M tại thời điểm t (t trong khoảng thời gian từ 0 phút đến 180 phút) có tọa độ là

Đề bài

Vị trí của một chất điểm M tại thời điểm t (t trong khoảng thời gian từ 0 phút đến 180 phút) có tọa độ là \(\left( {3 + 5\sin {t^ \circ };4 + 5cos{t^ \circ }} \right)\). Tìm tọa độ của chất điểm M khi M ở cách xa gốc tọa đô nhất.

Lời giải chi tiết

+ Từ cách xác định tọa độ của chất điểm M ta có:

\(\left\{ \begin{array}{l}{x_M} = 3 + 5\sin {t^ \circ }\\{y_M} = 4 + 5cos{t^ \circ }\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_M} - 3 = 5\sin {t^ \circ }\\{y_M} - 4 = 5cos{t^ \circ }\end{array} \right.\)

\( \Rightarrow {\left( {{x_M} - 3} \right)^2} + {\left( {{y_M} - 4} \right)^2} = 25\)

Vậy chất điểm M luôn thuộc đường tròn \(\left( C \right)\) có tâm \(I\left( {3;4} \right)\) và có bán kính \(R = 5\). Mặt khác gốc tọa độ O cũng thuộc đường tròn \(\left( C \right)\). Do đó ta có \(OM \le 2R = 10\)

Dấu “=” xảy ra khi và chỉ khi \(OM\) là đường đường kính của đường tròn \(\left( C \right)\), tức là I là trung điểm của OM, điều đó tương đương với:

\(\left\{ \begin{array}{l}{x_M} = 2{x_1} - {x_0}\\{y_M} = 2{y_1} - {y_0}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sin {t^ \circ } = \frac{3}{5}\\cos{t^ \circ } = \frac{4}{5}\end{array} \right.\) (có \(t \in \left( {0;180} \right)\)thỏa mãn hệ)

Vậy \(M\left( {6;8} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7.27 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7.27 trang 42 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.27 trang 42 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và các phép toán vectơ trong hệ tọa độ.

Phân tích bài toán 7.27 trang 42

Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp một hình vẽ hoặc một mô tả về các điểm và vectơ liên quan. Dựa vào đó, chúng ta cần xác định:

  • Các vectơ cần tính toán.
  • Các mối quan hệ giữa các vectơ.
  • Các công thức và định lý cần sử dụng.

Lời giải chi tiết bài 7.27 trang 42

Dưới đây là lời giải chi tiết bài 7.27 trang 42 sách bài tập Toán 10 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng từng bước. Ví dụ:)

Ví dụ: Giả sử bài toán yêu cầu tính độ dài của vectơ AB, biết tọa độ của điểm A(x1, y1) và điểm B(x2, y2). Ta có công thức tính độ dài vectơ AB như sau:

|AB| = √((x2 - x1)² + (y2 - y1)²)

(Tiếp tục trình bày lời giải chi tiết cho bài toán cụ thể, bao gồm các bước tính toán, sử dụng công thức và giải thích kết quả.)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 7.27 trang 42, sách bài tập Toán 10 Kết nối tri thức còn có nhiều bài tập tương tự liên quan đến vectơ và ứng dụng trong hình học. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:

  • Sử dụng định nghĩa và tính chất của vectơ: Xác định hướng và độ dài của vectơ, so sánh hai vectơ.
  • Áp dụng các phép toán vectơ: Cộng, trừ, nhân với một số thực để biến đổi các vectơ.
  • Sử dụng tích vô hướng: Tính góc giữa hai vectơ, xác định tính vuông góc của hai vectơ.
  • Sử dụng hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh có thể tự giải các bài tập sau:

  1. Bài 7.28 trang 42 sách bài tập Toán 10 Kết nối tri thức.
  2. Bài 7.29 trang 43 sách bài tập Toán 10 Kết nối tri thức.
  3. Các bài tập tương tự trong các nguồn tài liệu khác.

Kết luận

Bài 7.27 trang 42 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản, phân tích đề bài một cách cẩn thận và áp dụng các phương pháp giải phù hợp, các em học sinh có thể tự tin giải quyết bài toán này và các bài tập tương tự.

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài tập này sẽ giúp các em học sinh học tập hiệu quả và đạt kết quả tốt trong môn Toán 10.

Tài liệu, đề thi và đáp án Toán 10