Bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, phép toán vectơ để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.9 trang 23, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong một cuộc thi pha chế, mỗi đợi chơi được sử dụng tối đa 12g hương liệu, 9 lít nước và 315g đường để pha chế hai loại nước A và B.
Đề bài
Trong một cuộc thi pha chế, mỗi đợi chơi được sử dụng tối đa 12g hương liệu, 9 lít nước và 315g đường để pha chế hai loại nước A và B. Để pha chết 1 lít nước A cần 45g đường, 1 lít nước và 0,5g hương liệu; để pha chế 1 lít nước B cần 15g đường, 1 lít nước và 2g hương liệu. Mỗi lít nước A nhận được 60 điểm thưởng, mỗi lít nước B nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất?
Phương pháp giải - Xem chi tiết
- Tìm hệ bất phương trình từ bài toán trên
- Viết biểu thức về đội chơi được số điểm thưởng.
- Vẽ hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)
- Xác định miền nghiệm của hệ bất phương trình trên.
- Tìm giá trị lớn nhất của đội chơi được số điểm thưởng.
Lời giải chi tiết
Điều kiện: \(x \ge 0,\,\,y \ge 0.\)
Số hương liệu cần dùng để pha chế hai loại lít nước A và B là: \(0,5x + 2y \le 12.\)
Số lít nước cần dùng để pha chế hai loại nước A và B là: \(x + y \le 9.\)
Số g đường cần dùng để pha chế hai loại lít nước A và B là: \(45x + 15y \le 315.\)
Từ đó, ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}.} \right.\)
Số điểm thưởng của đội chơi nhận được là: \(F\left( {x;y} \right) = 60x + 80y \to \max \)
Xác định miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ \(d:x = 0\) chứa điểm \(\left( {1;0} \right).\)
Xác định miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_1}:y = 0\) chứa điểm \(\left( {0;1} \right).\)
Xác định miền nghiệm của bất phương trình \(0.5x + 2y \le 12\). Vẽ đường thẳng \({d_2}:0.5x + 2y = 12\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(0,5x + 2y,\) ta được: \(0,5.0 + 2.0 = 0 < 12\) nên miền nghiệm của bất phương trình \(0.5x + 2y \le 12\) là nửa mặt phẳng bờ \({d_2}\) chứa điểm \(O\left( {0;0} \right)\).
Xác định miền nghiệm của bất phương trình \(x + y \le 9\). Vẽ đường thẳng \({d_3}:x + y = 9\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_3}\) và thay vào biểu thức \(x + y,\) ta được: \(0 + 0 = 0 < 9\) nên miền nghiệm của bất phương trình \(x + y = 9\) là nửa mặt phẳng bờ \({d_3}\) chứa điểm \(O\left( {0;0} \right)\).
Xác định miền nghiệm của bất phương trình \(45x + 15y \le 315\). Vẽ đường thẳng \({d_4}:45x + 15y = 315\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_4}\) và thay vào biểu thức \(45x + 15y,\) ta được: \(45.0 + 15.0 = 0 < 315\) nên miền nghiệm của bất phương trình \(45x + 15y \le 315\) là nửa mặt phẳng bờ \({d_4}\) chứa điểm \(O\left( {0;0} \right)\).
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\)là ngũ giác \(OABCD\) với \(A\left( {0;6} \right),\,\,B\left( {4;5} \right),\,\,C\left( {6;3} \right),\,\,D\left( {7;0} \right)\)
Ta có: \(F\left( {0;6} \right) = 60.0 + 80.6 = 480,\)
\(F\left( {4;5} \right) = 60.4 + 80.5 = 640,\)
\(F\left( {0;0} \right) = 60.0 + 80.0 = 0,\)
\(F\left( {6;3} \right) = 60.6 + 80.3 = 600,\)
\(F\left( {7;0} \right) = 60.7 + 80.0 = 420.\)
\( \Rightarrow \) giá trị lớn nhất là \(F\left( {4;5} \right) = 640.\)
Vậy vần pha chế 4 lít nước loại A và 5 lít nước loại B thì số điểm thưởng nhận được là lớn nhất.
Bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải nắm vững kiến thức về vectơ và các phép toán vectơ. Dưới đây là hướng dẫn giải chi tiết bài toán này:
Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo hai vectơ AB và AC.
Để tìm vectơ AM theo hai vectơ AB và AC, ta sử dụng quy tắc trung điểm và quy tắc cộng vectơ.
vectơ AM = vectơ AB + vectơ BM
vectơ AM = vectơ AB + vectơ MC
vectơ MC = vectơ AC - vectơ AM
vectơ AM = vectơ AB + (vectơ AC - vectơ AM)
2 * vectơ AM = vectơ AB + vectơ AC
vectơ AM = (vectơ AB + vectơ AC) / 2
Vậy, vectơ AM được biểu diễn theo hai vectơ AB và AC là: vectơ AM = (vectơ AB + vectơ AC) / 2
Ngoài bài 2.9, còn rất nhiều bài tập tương tự liên quan đến vectơ và các phép toán vectơ. Để giải quyết các bài tập này, bạn cần nắm vững các kiến thức sau:
Khi gặp một bài tập mới, hãy xác định rõ các vectơ đã cho và vectơ cần tìm. Sau đó, sử dụng các quy tắc và công thức phù hợp để biểu diễn vectơ cần tìm theo các vectơ đã cho.
Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có rất nhiều ứng dụng trong thực tế, như:
Để củng cố kiến thức về vectơ và các phép toán vectơ, bạn có thể làm thêm các bài tập sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống và tự tin hơn trong việc học tập môn Toán.