Logo Header
  1. Môn Toán
  2. Giải bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.9 trang 23 Sách bài tập Toán 10 - Kết nối tri thức

Bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, phép toán vectơ để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.9 trang 23, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Trong một cuộc thi pha chế, mỗi đợi chơi được sử dụng tối đa 12g hương liệu, 9 lít nước và 315g đường để pha chế hai loại nước A và B.

Đề bài

Trong một cuộc thi pha chế, mỗi đợi chơi được sử dụng tối đa 12g hương liệu, 9 lít nước và 315g đường để pha chế hai loại nước A và B. Để pha chết 1 lít nước A cần 45g đường, 1 lít nước và 0,5g hương liệu; để pha chế 1 lít nước B cần 15g đường, 1 lít nước và 2g hương liệu. Mỗi lít nước A nhận được 60 điểm thưởng, mỗi lít nước B nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất?

Phương pháp giải - Xem chi tiếtGiải bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Tìm hệ bất phương trình từ bài toán trên

- Viết biểu thức về đội chơi được số điểm thưởng.

- Vẽ hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của hệ bất phương trình trên.

- Tìm giá trị lớn nhất của đội chơi được số điểm thưởng.

Lời giải chi tiết

  • Gọi \(x\) và \(y\) lần lượt là số lít nước loại A và B cần pha chế.

Điều kiện: \(x \ge 0,\,\,y \ge 0.\)

Số hương liệu cần dùng để pha chế hai loại lít nước A và B là: \(0,5x + 2y \le 12.\)

Số lít nước cần dùng để pha chế hai loại nước A và B là: \(x + y \le 9.\)

Số g đường cần dùng để pha chế hai loại lít nước A và B là: \(45x + 15y \le 315.\)

Từ đó, ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}.} \right.\)

Số điểm thưởng của đội chơi nhận được là: \(F\left( {x;y} \right) = 60x + 80y \to \max \)

  • Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\)trên cùng mặt phẳng tọa độ \(Oxy.\)

Xác định miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ \(d:x = 0\) chứa điểm \(\left( {1;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_1}:y = 0\) chứa điểm \(\left( {0;1} \right).\)

Xác định miền nghiệm của bất phương trình \(0.5x + 2y \le 12\). Vẽ đường thẳng \({d_2}:0.5x + 2y = 12\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(0,5x + 2y,\) ta được: \(0,5.0 + 2.0 = 0 < 12\) nên miền nghiệm của bất phương trình \(0.5x + 2y \le 12\) là nửa mặt phẳng bờ \({d_2}\) chứa điểm \(O\left( {0;0} \right)\).

Xác định miền nghiệm của bất phương trình \(x + y \le 9\). Vẽ đường thẳng \({d_3}:x + y = 9\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_3}\) và thay vào biểu thức \(x + y,\) ta được: \(0 + 0 = 0 < 9\) nên miền nghiệm của bất phương trình \(x + y = 9\) là nửa mặt phẳng bờ \({d_3}\) chứa điểm \(O\left( {0;0} \right)\).

Xác định miền nghiệm của bất phương trình \(45x + 15y \le 315\). Vẽ đường thẳng \({d_4}:45x + 15y = 315\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_4}\) và thay vào biểu thức \(45x + 15y,\) ta được: \(45.0 + 15.0 = 0 < 315\) nên miền nghiệm của bất phương trình \(45x + 15y \le 315\) là nửa mặt phẳng bờ \({d_4}\) chứa điểm \(O\left( {0;0} \right)\).

Giải bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 2

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\)là ngũ giác \(OABCD\) với \(A\left( {0;6} \right),\,\,B\left( {4;5} \right),\,\,C\left( {6;3} \right),\,\,D\left( {7;0} \right)\)

Ta có: \(F\left( {0;6} \right) = 60.0 + 80.6 = 480,\)

 \(F\left( {4;5} \right) = 60.4 + 80.5 = 640,\)

\(F\left( {0;0} \right) = 60.0 + 80.0 = 0,\)

\(F\left( {6;3} \right) = 60.6 + 80.3 = 600,\)

\(F\left( {7;0} \right) = 60.7 + 80.0 = 420.\)

\( \Rightarrow \) giá trị lớn nhất là \(F\left( {4;5} \right) = 640.\)

Vậy vần pha chế 4 lít nước loại A và 5 lít nước loại B thì số điểm thưởng nhận được là lớn nhất.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2.9 trang 23 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải nắm vững kiến thức về vectơ và các phép toán vectơ. Dưới đây là hướng dẫn giải chi tiết bài toán này:

Đề bài:

Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo hai vectơ AB và AC.

Lời giải:

Để tìm vectơ AM theo hai vectơ AB và AC, ta sử dụng quy tắc trung điểm và quy tắc cộng vectơ.

  1. Quy tắc trung điểm: Vì M là trung điểm của BC, ta có: BM = MC. Do đó, vectơ BM = vectơ MC.
  2. Biểu diễn vectơ AM: Ta có thể biểu diễn vectơ AM như sau:

    vectơ AM = vectơ AB + vectơ BM

  3. Thay thế vectơ BM:vectơ BM = vectơ MC, ta có:

    vectơ AM = vectơ AB + vectơ MC

  4. Biểu diễn vectơ MC: Ta có thể biểu diễn vectơ MC như sau:

    vectơ MC = vectơ AC - vectơ AM

  5. Thay thế vectơ MC vào phương trình vectơ AM:

    vectơ AM = vectơ AB + (vectơ AC - vectơ AM)

  6. Giải phương trình để tìm vectơ AM:

    2 * vectơ AM = vectơ AB + vectơ AC

    vectơ AM = (vectơ AB + vectơ AC) / 2

Kết luận:

Vậy, vectơ AM được biểu diễn theo hai vectơ AB và AC là: vectơ AM = (vectơ AB + vectơ AC) / 2

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 2.9, còn rất nhiều bài tập tương tự liên quan đến vectơ và các phép toán vectơ. Để giải quyết các bài tập này, bạn cần nắm vững các kiến thức sau:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Quy tắc cộng vectơ: Quy tắc hình bình hành, quy tắc tam giác.
  • Quy tắc trung điểm: Vectơ nối trung điểm của một cạnh với đỉnh đối diện bằng một nửa tổng của hai vectơ tạo thành cạnh đó.

Khi gặp một bài tập mới, hãy xác định rõ các vectơ đã cho và vectơ cần tìm. Sau đó, sử dụng các quy tắc và công thức phù hợp để biểu diễn vectơ cần tìm theo các vectơ đã cho.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có rất nhiều ứng dụng trong thực tế, như:

  • Vật lý: Biểu diễn vận tốc, gia tốc, lực.
  • Tin học: Biểu diễn đồ họa, xử lý ảnh.
  • Địa lý: Biểu diễn hướng đi, khoảng cách.
  • Kỹ thuật: Thiết kế máy móc, xây dựng công trình.

Bài tập luyện tập

Để củng cố kiến thức về vectơ và các phép toán vectơ, bạn có thể làm thêm các bài tập sau:

  1. Cho tam giác ABC. Gọi D là trung điểm của AB. Tìm vectơ CD theo hai vectơ CA và CB.
  2. Cho hình bình hành ABCD. Tìm vectơ AC theo hai vectơ AB và AD.
  3. Cho ba điểm A, B, C không thẳng hàng. Tìm vectơ AO sao cho vectơ OA + vectơ OB + vectơ OC = 0.

Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 2.9 trang 23 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống và tự tin hơn trong việc học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 10