Bài 4.33 trang 65 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.33 trang 65 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tam giác ABC không cân. Gọi D,E,F theo thứ tự là chân các đường cao kẻ từ A,B,C; gọi M,N,P tương ứng là trung điểm các cạnh BC,CA,AB.
Đề bài
Cho tam giác \(ABC\) không cân. Gọi \(D,\,\,E,\,\,F\) theo thứ tự là chân các đường cao kẻ từ \(A,\,\,B,\,\,C;\) gọi \(M,\,\,N,\,\,P\) tương ứng là trung điểm các cạnh \(BC,\,\,CA,\,\,AB.\) Chứng minh rằng \(\overrightarrow {MD} .\overrightarrow {BC} + \overrightarrow {NE} .\overrightarrow {CA} + \overrightarrow {PF} .\overrightarrow {AB} = 0\)
Phương pháp giải - Xem chi tiết
- Gọi \(H\) là trực tâm và \(O\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
- Áp dụng định lý chiếu để tính tích vô hướng của các vectơ sau \(\overrightarrow {MD} .\overrightarrow {BC} ,\) \(\overrightarrow {NE} .\overrightarrow {CA} \) và \(\overrightarrow {PF} .\overrightarrow {AB} \)
Lời giải chi tiết
Gọi \(H\) là trực tâm và \(O\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
Ta có: \(ON \bot AC,\) \(OM \bot BC,\) \(OP \bot AB\) (quan hệ giữa đường kính và dây cung)
Áp dụng định lý chiếu ta có:
\(\overrightarrow {MD} .\overrightarrow {BC} = \overrightarrow {OH} .\left( {\overrightarrow {OC} - \overrightarrow {OB} } \right) = \overrightarrow {OH} .\overrightarrow {OC} - \overrightarrow {OH} .\overrightarrow {OB} \) (1)
\(\overrightarrow {NE} .\overrightarrow {CA} = \overrightarrow {OH} .\left( {\overrightarrow {OA} - \overrightarrow {OC} } \right) = \overrightarrow {OH} .\overrightarrow {OA} - \overrightarrow {OH} .\overrightarrow {OC} \) (2)
\(\overrightarrow {PF} .\overrightarrow {AB} = \overrightarrow {OH} .\left( {\overrightarrow {OB} - \overrightarrow {OA} } \right) = \overrightarrow {OH} .\overrightarrow {OB} - \overrightarrow {OH} .\overrightarrow {OA} \) (3)
Từ (1), (2) và (3) \( \Rightarrow \) \(\overrightarrow {MD} .\overrightarrow {BC} + \overrightarrow {NE} .\overrightarrow {CA} + \overrightarrow {PF} .\overrightarrow {AB} = 0\) (đpcm)
Bài 4.33 trang 65 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 4.33 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 4.33, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:
Cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh BC. Tính độ dài của vectơ AM.
Lời giải:
Vậy độ dài của vectơ AM là (a√5)/2.
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh có thể tham khảo một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác nhau với lời giải chi tiết, giúp các em tự tin hơn trong kỳ thi.
Bài 4.33 trang 65 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh rèn luyện kỹ năng giải toán về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.