Logo Header
  1. Môn Toán
  2. Giải bài 6.29 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.29 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.29 trang 21 Sách bài tập Toán 10 - Kết nối tri thức

Bài 6.29 trang 21 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.29 trang 21, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \(\sqrt {2{x^2} - 13x + 16} = 6 - x\)

b) \(\sqrt {3{x^2} - 33x + 55} = x - 5\) 

c) \(\sqrt { - {x^2} + 3x + 1} = x - 4\)

Phương pháp giải - Xem chi tiếtGiải bài 6.29 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Giải phương trình dạng \(\sqrt {a{x^2} + bx + c} = dx + e\) (1)

Bước 1: Bình phương 2 vế của (1) ta được PT \((a - {d^2}){x^2} + (b - 2de)x + (c - {e^2}) = 0\) (2)

Bước 2: Giải PT (2)

Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào vế phải của PT (1) để tìm ra các nghiệm thỏa mãn vế phải ≥ 0 rồi kết luận

Lời giải chi tiết

a) \(\sqrt {2{x^2} - 13x + 16} = 6 - x\) (1)

Bình phương 2 vế của (1) ta được:

\(2{x^2} - 13x + 16 = {x^2} - 12x + 36 \Leftrightarrow {x^2} - x - 20 = 0 \Leftrightarrow x = - 4\) hoặc x = 5

+) Thay x = -4 vào vế phải PT (1): 6- (-4) = 10 > 0

+) Thay x = 5 vào vế phải PT (1): 6 – 5 = 1 > 0

Vậy PT (1) có hai nghiệm phân biệt là x = -4; x = 5

b) \(\sqrt {3{x^2} - 33x + 55} = x - 5\) (2)

Bình phương 2 vế của (2) ta được:

\(3{x^2} - 33x + 55 = {x^2} - 10x + 25 \Leftrightarrow 2{x^2} - 23x + 30 = 0 \Leftrightarrow x = \frac{3}{2}\) hoặc x = 10

+) Thay \(x = \frac{3}{2}\) vào vế phải PT (2): \(\frac{3}{2} - 5 = - \frac{7}{2} < 0\)

+) Thay x = 10 vào vế phải PT (2): 10 – 5 = 5 > 0

Vậy PT (2) có nghiệm duy nhất x = 10

c) \(\sqrt { - {x^2} + 3x + 1} = x - 4\) (3)

Bình phương 2 vế PT (3) ta được:

\( - {x^2} + 3x + 1 = {x^2} - 8x + 16 \Leftrightarrow 2{x^2} - 11x + 15 = 0\)\( \Leftrightarrow x = \frac{5}{2}\) hoặc x = 3

+) Thay \(x = \frac{5}{2}\) vào vế phải PT (3): \(\frac{5}{2} - 4 = - \frac{3}{2} < 0\)

+) Thay x = 3 vào vế phải PT (3): 3 – 4 = -1 < 0

Vậy PT (3) vô nghiệm

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6.29 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6.29 trang 21 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.29 trang 21 sách bài tập Toán 10 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các phép toán trên vectơ (cộng, trừ, nhân với một số thực).
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng, ứng dụng của tích vô hướng trong việc xác định góc giữa hai vectơ, kiểm tra tính vuông góc của hai vectơ.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán trên vectơ trong hệ tọa độ.

Phân tích bài toán và tìm hướng giải quyết

Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, để giải các bài toán liên quan đến vectơ, chúng ta có thể sử dụng các phương pháp sau:

  1. Sử dụng định nghĩa và các tính chất của vectơ.
  2. Sử dụng tích vô hướng của hai vectơ.
  3. Sử dụng hệ tọa độ.

Lời giải chi tiết bài 6.29 trang 21

(Nội dung lời giải chi tiết bài 6.29 trang 21 sẽ được trình bày tại đây, bao gồm các bước giải, các công thức sử dụng và các giải thích rõ ràng. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.)

Ví dụ minh họa và bài tập tương tự

Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán này, chúng ta sẽ xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập.

Lưu ý quan trọng khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng đúng các công thức và tính chất của vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài 6.29 trang 21 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!

Bảng tổng hợp các công thức liên quan đến vectơ

Công thứcMô tả
a + b = b + aTính giao hoán của phép cộng vectơ
a + (b + c) = (a + b) + cTính kết hợp của phép cộng vectơ
a.b = |a||b|cos(θ)Công thức tính tích vô hướng của hai vectơ

Tài liệu, đề thi và đáp án Toán 10