Logo Header
  1. Môn Toán
  2. Giải bài 17 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 17 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 17 trang 73 Sách bài tập Toán 10 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 17 trang 73 Sách bài tập Toán 10 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi đã biên soạn lời giải bài 17 trang 73 một cách cẩn thận, kèm theo các giải thích chi tiết để bạn có thể hiểu rõ từng bước thực hiện.

Khi tham gia một trò chơi quay số trúng thưởng, mỗi người chơi chọn một số 4 chữ số (có tính cả số 0 ở đầu). Bạn An chọn số 0347. Người quản trò quay 4 tấm bìa cứng hình tròn I, II, III, IV, mỗi tấm bìa được chia thành 10 phần có diện tích bằng nhau và đánh số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 được gắn vào trục quay có mũi tên ở tâm.

Đề bài

Khi tham gia một trò chơi quay số trúng thưởng, mỗi người chơi chọn một số 4 chữ số (có tính cả số 0 ở đầu). Bạn An chọn số 0347. Người quản trò quay 4 tấm bìa cứng hình tròn I, II, III, IV, mỗi tấm bìa được chia thành 10 phần có diện tích bằng nhau và đánh số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 được gắn vào trục quay có mũi tên ở tâm. Giả sử mũi tên của bìa cứng số I, II, III và IV tương ứng dừng ở các số a, b, c, d. Khi đó số abcd gọi là số trúng thưởng. Nếu số của người chơi trung hoàn toàn với số trúng thưởng thì người chơi trúng giải nhất trùng với 3 chữ số của số trúng thưởng (tính cả thứ tự) thì người chơi trúng giải nhì.

Tính xác suất bạn An trúng giải nhất, giải nhì. 

Lời giải chi tiết

Không gian mẫu \(\Omega = \{ \overline {abcd} ;a,b,c,d \in \{ 0;1;2;3;4;5;6;7;8;9\} \} \)

Mỗi chữ số có 10 cách chọn.

Theo quy tắc nhân ta có: \(n(\Omega ) = {10^4}\)

Gọi E là biến cố “An trúng giải nhất”.

\(E = \left\{ {0347} \right\} \Rightarrow n\left( E \right) = 1\)

\( \Rightarrow P(E) = \frac{1}{{{{10}^4}}} = 0,0001\)

Gọi F là biến cố “An trúng giải nhì” \(F = \{ a347;0b47;03c7;034d\} \)

Trong đó \(a,b,c,d \in \{ 0;1;2;3;4;5;6;7;8;9\} \)

\( \Rightarrow n\left( F \right){\rm{ = }}9.{\rm{ }}4 = {\rm{ }}36\)

\( \Rightarrow P(F) = \frac{{36}}{{{{10}^4}}} = 0,0036\)

Vậy xác suất An trúng giải nhất là 0,0001 và xác suất An trúng giải nhì là 0,0036.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 17 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 17 trang 73 Sách bài tập Toán 10 - Kết nối tri thức: Tổng quan

Bài 17 trang 73 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép cộng, trừ, nhân vectơ với một số, và tích vô hướng của hai vectơ.

Nội dung bài tập 17 trang 73

Bài 17 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Tính tích vô hướng của hai vectơ và ứng dụng để chứng minh các tính chất hình học (ví dụ: hai đường thẳng vuông góc, hai vectơ vuông góc).
  • Dạng 4: Giải các bài toán liên quan đến ứng dụng của vectơ trong hình học phẳng (ví dụ: tìm tâm đường tròn ngoại tiếp, tâm đường tròn nội tiếp).

Lời giải chi tiết bài 17 trang 73

Để giúp bạn hiểu rõ hơn về cách giải bài 17 trang 73, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Lưu ý: Nội dung giải chi tiết sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập 17, do đó, phần này sẽ khá dài và chi tiết.)

Ví dụ minh họa (Giả định một phần của bài tập 17)

Câu a: Cho hai vectơ a = (2; -1)b = (-3; 4). Tính a + b.

Lời giải:

a + b = (2 + (-3); -1 + 4) = (-1; 3)

Các lưu ý khi giải bài tập về vectơ

  • Nắm vững định nghĩa vectơ, các phép toán vectơ, và tích vô hướng của hai vectơ.
  • Sử dụng các công thức và tính chất vectơ một cách chính xác.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán và tìm ra hướng giải.
  • Kiểm tra lại kết quả sau khi giải xong để đảm bảo tính chính xác.

Ứng dụng của vectơ trong Toán học và thực tế

Vectơ là một khái niệm quan trọng trong Toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như:

  • Hình học: Vectơ được sử dụng để biểu diễn các điểm, đường thẳng, mặt phẳng, và các hình hình học khác.
  • Vật lý: Vectơ được sử dụng để biểu diễn các đại lượng vật lý như vận tốc, gia tốc, lực, và mômen.
  • Tin học: Vectơ được sử dụng trong đồ họa máy tính, xử lý ảnh, và các ứng dụng khác.
  • Kỹ thuật: Vectơ được sử dụng trong các bài toán về cơ học, điện, và các lĩnh vực kỹ thuật khác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 10 và giải các bài tập về vectơ, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 - Kết nối tri thức
  • Sách bài tập Toán 10 - Kết nối tri thức
  • Các trang web học Toán online uy tín (ví dụ: giaitoan.edu.vn)
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 17 trang 73 Sách bài tập Toán 10 - Kết nối tri thức một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10