Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.13 trang 39, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tam giác ABC. Chứng minh rằng:
Đề bài
Cho tam giác \(ABC.\) Chứng minh rằng:
a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)
Phương pháp giải - Xem chi tiết
a) sử dụng định lý sin và công thức tính diện tích tam giác.
b) sử dụng tính chất đường trung tuyến của tam giác.
Lời giải chi tiết
a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)
\(\begin{array}{l}VT = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}} = \frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\frac{{2S}}{{bc}}}} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{{\frac{{2S}}{{ac}}}} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{{\frac{{2S}}{{ab}}}}\\ = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}} = VP\,\,\left( {dpcm} \right)\end{array}\)
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)
\(\begin{array}{l}VT = \left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right) + \left( {\frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}} \right) + \left( {\frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}} \right)\\ = \frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{2} - \frac{{{a^2} + {b^2} + {c^2}}}{4}\\ = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right) = VP\,\,\left( {dpcm} \right).\end{array}\)
Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Dưới đây là lời giải chi tiết bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Ví dụ lời giải:
Cho tam giác ABC, với A(xA, yA), B(xB, yB), C(xC, yC). Gọi M là trung điểm của BC. Tìm tọa độ của vectơ AM.
Vậy, tọa độ của vectơ AM là ((xB + xC)/2 - xA, (yB + yC)/2 - yA).
Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:
Để rèn luyện thêm kỹ năng giải bài tập về vectơ, các em có thể tham khảo các bài tập tương tự sau:
Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết bài toán này và đạt kết quả tốt trong môn Toán.