Logo Header
  1. Môn Toán
  2. Giải bài 3.13 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.13 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.13 trang 39 Sách bài tập Toán 10 - Kết nối tri thức

Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.13 trang 39, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tam giác ABC. Chứng minh rằng:

Đề bài

Cho tam giác \(ABC.\) Chứng minh rằng:

a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)

b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)

Phương pháp giải - Xem chi tiếtGiải bài 3.13 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

a) sử dụng định lý sin và công thức tính diện tích tam giác.

b) sử dụng tính chất đường trung tuyến của tam giác.

Lời giải chi tiết

a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)

\(\begin{array}{l}VT = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}} = \frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\frac{{2S}}{{bc}}}} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{{\frac{{2S}}{{ac}}}} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{{\frac{{2S}}{{ab}}}}\\ = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}} = VP\,\,\left( {dpcm} \right)\end{array}\)

b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)

\(\begin{array}{l}VT = \left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right) + \left( {\frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}} \right) + \left( {\frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}} \right)\\ = \frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{2} - \frac{{{a^2} + {b^2} + {c^2}}}{4}\\ = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right) = VP\,\,\left( {dpcm} \right).\end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3.13 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán 10 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3.13 trang 39 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về khoảng cách, diện tích.

Phân tích bài toán

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:

  • Các điểm và vectơ đã cho: Xác định các điểm và vectơ được đề cập trong bài toán.
  • Yêu cầu của bài toán: Xác định rõ điều gì cần tìm hoặc chứng minh.
  • Các mối quan hệ giữa các yếu tố: Tìm hiểu mối quan hệ giữa các điểm, vectơ và các yếu tố khác trong bài toán.

Lời giải chi tiết

Dưới đây là lời giải chi tiết bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)

Ví dụ lời giải:

Cho tam giác ABC, với A(xA, yA), B(xB, yB), C(xC, yC). Gọi M là trung điểm của BC. Tìm tọa độ của vectơ AM.

  1. Tìm tọa độ của điểm M: M là trung điểm của BC nên xM = (xB + xC)/2 và yM = (yB + yC)/2.
  2. Tìm tọa độ của vectơ AM: Vectơ AM có tọa độ (xM - xA, yM - yA) = ((xB + xC)/2 - xA, (yB + yC)/2 - yA).

Vậy, tọa độ của vectơ AM là ((xB + xC)/2 - xA, (yB + yC)/2 - yA).

Lưu ý khi giải bài tập

Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:

  • Vẽ hình: Vẽ hình giúp các em hình dung rõ hơn về bài toán và tìm ra hướng giải.
  • Sử dụng các công thức: Nắm vững các công thức về vectơ và áp dụng một cách chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về vectơ, các em có thể tham khảo các bài tập tương tự sau:

  • Bài 3.14 trang 39 sách bài tập Toán 10 Kết nối tri thức
  • Bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức

Kết luận

Bài 3.13 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết bài toán này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10