Logo Header
  1. Môn Toán
  2. Giải bài 2.24 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.24 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức

Bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc X và gia súc Y để tạo thành thức ăn hỗn hợp cho gia súc.

Đề bài

Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc \(X\) và gia súc \(Y\) để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại \(X\) là 250 nghìn đồng, giá một bao loại \(Y\) là 200 nghìn đồng. Mỗi bao loại \(X\) chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C. Mỗi bao loại \(Y\) chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C. Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc \(X\) và \(Y\) sao cho hỗn hợp thu được tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C.

A. \(1,95\) triệu đồng.

B. \(4,5\) triệu đồng.

C. \(1,85\) triệu đồng.

D. \(1,7\) triệu đồng.

Phương pháp giải - Xem chi tiếtGiải bài 2.24 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Viết hệ bất phương trình từ bài toán trên

- Xác định miền nghiệm của hệ bất phương trình đó

- Viết biểu thức biểu thị chi phí để mua hai loại thức ăn gia súc loại \(X\) và \(Y\)

- Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc loại \(X\) và \(Y\) từ miền nghiệm vừa tìm được.

Lời giải chi tiết

  • Gọi \(x\) và \(y\) lần lượt là số bao loại \(X\) và \(Y.\) Điều kiện: \(x \ge 0;\,\,y \ge 0.\)

Số lượng chất dinh dưỡng A cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + y \ge 12.\)

Số lượng chất dinh dưỡng B cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + 9y \ge 36.\)

Số lượng chất dinh dưỡng C cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + 3y \ge 24.\)

Từ đó, ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{2x + y \ge 12.}\\{2x + 9y \ge 36.}\\{2x + 3y \ge 24.}\end{array}} \right.\)

Miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ \(d:x = 0\) chứa điểm \(\left( {1;0} \right).\)

Miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_1}:y = 0\) chứa điểm \(\left( {0;1} \right).\)

Miền nghiệm của bất phương trình \(2x + y \ge 12\) là nửa mặt phẳng bờ \({d_2}:2x + y = 12\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \(2x + 9y \ge 36\) là nửa mặt phẳng bờ \({d_3}:2x + 9y = 36\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \(2x + 3y \ge 24\) là nửa mặt phẳng bờ \({d_4}:2x + 3y = 24\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)

Giải bài 2.24 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 2

Miền nghiệm của hệ bất phương trình là: miền không bị gạch với các đỉnh \(A\left( {18;0} \right),\) \(B\left( {9;2} \right),\) \(C\left( {3;6} \right),\) \(D\left( {0;12} \right).\)

  • Chi phí để mua hai loại thức ăn gia súc loại \(X\) và \(Y\) là: \(F\left( {x;y} \right) = 250x + 200y\) (nghìn đồng).
  • Ta có: \(F\left( {18;0} \right) = 250.18 + 200.0 = 4500,\,\,F\left( {9;2} \right) = 250.9 + 200.2 = 2650,\)

\(F\left( {3;6} \right) = 250.3 + 200.6 = 1950,\,\,F\left( {0;12} \right) = 250.0 + 200.12 = 2400.\)

Vậy chi phí nhỏ nhất để mua hai loại thức ăn gia súc loại \(X\) và \(Y\) là: \(F\left( {3;6} \right) = 1950.\)

Chọn A.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2.24 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, tính độ dài đoạn thẳng, góc giữa hai vectơ.

Nội dung bài tập 2.24

Bài 2.24 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm vectơ cần tính.
  3. Sử dụng tích vô hướng để tính góc giữa hai vectơ hoặc chứng minh các mối quan hệ hình học.

Lời giải chi tiết bài 2.24 trang 27

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 2.24, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:

Cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh BC. Tính độ dài của vectơ AM.

Lời giải:

  1. Đặt hệ tọa độ: Chọn gốc tọa độ tại A, trục Ox trùng với cạnh AB, trục Oy trùng với cạnh AD.
  2. Xác định tọa độ các điểm:
    • A(0; 0)
    • B(a; 0)
    • C(a; a)
    • D(0; a)
    • M(a; a/2)
  3. Tính vectơ AM: AM = M - A = (a; a/2)
  4. Tính độ dài vectơ AM: |AM| = √((a)^2 + (a/2)^2) = √(a^2 + a^2/4) = √(5a^2/4) = (a√5)/2

Vậy độ dài của vectơ AM là (a√5)/2.

Mẹo giải bài tập vectơ

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Sử dụng hình vẽ để trực quan hóa bài toán.
  • Lựa chọn hệ tọa độ phù hợp để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, như:

  • Vật lý: Biểu diễn vận tốc, gia tốc, lực.
  • Tin học: Xử lý ảnh, đồ họa máy tính.
  • Kỹ thuật: Thiết kế máy móc, xây dựng công trình.

Bài tập luyện tập

Để củng cố kiến thức về vectơ, các em học sinh có thể tự giải các bài tập sau:

  • Bài 2.25 trang 27 Sách bài tập Toán 10 - Kết nối tri thức
  • Bài 2.26 trang 27 Sách bài tập Toán 10 - Kết nối tri thức

Kết luận

Bài 2.24 trang 27 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10