Bài 6.43 trang 24 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.43 trang 24, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Khẳng định nào dưới đây là đúng?
Đề bài
Cho hàm số bậc hai \(y = a{x^2} + bx + c\) có đồ thị là đường parabol dưới đây. Khẳng định nào dưới đây là đúng?
A. a < 0, b < 0, c < 0 B. a < 0, b < 0, c > 0
C. a < 0, b > 0, c < 0 D. a < 0, b > 0, c > 0
Lời giải chi tiết
Parabol có bề lõm xuống dưới nên hệ số a < 0
Từ đồ thị suy ra tung độ giao điểm của đồ thị với trục tung có giá trị dương nên c > 0 => Loại A, C
Hoành độ đỉnh parabol có giá trị dương nên \( - \frac{b}{{2a}}\) > 0 mà a < 0. Do đó b > 0
\( \Rightarrow \) Chọn D
Bài 6.43 trang 24 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, bài toán vectơ có thể được giải bằng các phương pháp sau:
(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.)
Lời giải:
Ta có: AM = AB + BM
Vì M là trung điểm của BC nên BM = 1/2 BC
Mà BC = AC - AB
Do đó, BM = 1/2 (AC - AB)
Thay vào phương trình AM = AB + BM, ta được:
AM = AB + 1/2 (AC - AB) = AB + 1/2 AC - 1/2 AB = 1/2 AB + 1/2 AC
Vậy, AM = 1/2 AB + 1/2 AC
Để nắm vững kiến thức về vectơ và ứng dụng trong hình học, các em học sinh nên luyện tập thêm các bài tập tương tự. Giaitoan.edu.vn cung cấp nhiều bài tập khác với các mức độ khó khác nhau, giúp các em rèn luyện kỹ năng và tự tin hơn khi làm bài kiểm tra.
Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 6.43 trang 24 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn của Giaitoan.edu.vn, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!