Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 18 trang 73 sách bài tập Toán 10 - Kết nối tri thức. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.
Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1, 2, ..., 45, chẳng hạn bạn Bình chọn bộ số {4, 12, 20, 31, 32, 33}.
Đề bài
Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1, 2, ..., 45, chẳng hạn bạn Bình chọn bộ số {4, 12, 20, 31, 32, 33}. Sau đó, người quản trò bốc thăm ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1, 2, ..., 45. Bộ 6 số ghi trên 6 quả bóng đó, gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với 4 số của bộ số trúng thưởng thì người chơi trúng giải nhì. Tính xác suất bạn Bình trúng giải nhì khi chơi.
Lời giải chi tiết
Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1,2,..., 44, 45}
\(n(\Omega ) = C_{45}^6 = 8145000\)
Gọi E là biến cố: “Bạn Bình trúng giải nhi”.
E là tập hợp tất cả các tập con gồm sáu phần tử của tập {1; 2; 3; ...; 45} có tính chất:
- Bốn phần tử của nó thuộc tập {4; 12, 20, 31, 32, 33}
- Hai phần tử còn lại không thuộc tập {4; 12; 20, 31, 32, 33}.
Chọn 4 phần tử trong tập {4; 12, 20, 31, 32, 33}. Có \(C_6^4 = 15\) cách
Chọn 2 phần tử còn lại trong 39 phần tử của tập {1; 2; ..., 44, 45} \{4; 12, 20, 31, 32, 33} có \(C_{39}^2 = 741\) cách.
Tập E có 15 . 741=11 115 phần tử.
Vậy xác suất bạn Bình trúng giải nhì khi chơi là: \(P(E) = \frac{{11115}}{{8145000}} = 0,00136\)
Bài 18 trang 73 sách bài tập Toán 10 - Kết nối tri thức tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải quyết các bài toán liên quan đến hình học phẳng sử dụng vectơ.
Bài 18 bao gồm các dạng bài tập sau:
Đề bài: Cho hình bình hành ABCD. Gọi M là trung điểm của BC. Chứng minh rằng AM = DC.
Lời giải:
Đề bài: Cho tam giác ABC. Gọi G là trọng tâm của tam giác. Chứng minh rằng GA + GB + GC = 0.
Lời giải:
Vì G là trọng tâm của tam giác ABC nên GA = 2/3AD, GB = 2/3BE, GC = 2/3CF, với D, E, F lần lượt là trung điểm của BC, CA, AB.
Ta có: GA + GB + GC = 2/3(AD + BE + CF).
Sử dụng quy tắc cộng vectơ, ta có AD + BE + CF = 0.
Do đó, GA + GB + GC = 0.
Bài 18 trang 73 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.