Logo Header
  1. Môn Toán
  2. Giải bài 2.17 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.17 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức

Bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch) ?

Đề bài

Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác \(ABC\) (miền không bị gạch)?

Giải bài 2.17 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

A. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \ge 1}\\{x \ge 0}\end{array}.} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \le 1}\\{x \ge 0}\end{array}} \right..\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 1}\\{x + y \ge - 1}\\{x \ge 0}\end{array}.} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 1}\\{x + y \ge - 1}\\{y \ge 0}\end{array}.} \right.\)

Lời giải chi tiết

Dễ thấy đáp án D sai.

Thay điểm \(O\left( {0;0} \right)\) vào bất phương trình, \(x - y \ge 1\)ta được:

\(0 - 0 = 0 > 1\) (vô lý)

\( \Rightarrow \) loại đáp án A.

 Thay điểm \(O\left( {0;0} \right)\) vào bất phương trình, \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x - y \le 1}\\{x \ge 0}\end{array}} \right.\) ta được:

\(\left\{ {\begin{array}{*{20}{c}}{0 + 0 = 0 < 1}\\{0 - 0 < 1}\\{0 \ge 0}\end{array}} \right.\) (thỏa mãn)

\( \Rightarrow \) đáp án B đúng.

Chọn B.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2.17 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 2.17 trang 25

Bài 2.17 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ mới.
  3. Sử dụng tích vô hướng để chứng minh các mối quan hệ giữa các vectơ.
  4. Giải các bài toán liên quan đến hình học phẳng hoặc không gian.

Lời giải chi tiết bài 2.17 trang 25

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 2.17 trang 25, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:

Cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh BC. Tính độ dài của vectơ AM.

Lời giải:

  1. Đặt hệ tọa độ: Chọn gốc tọa độ tại điểm A, trục Ox trùng với cạnh AB, trục Oy trùng với cạnh AD.
  2. Xác định tọa độ các điểm:
    • A(0; 0)
    • B(a; 0)
    • C(a; a)
    • D(0; a)
    • M(a; a/2)
  3. Tính vectơ AM: AM = (a - 0; a/2 - 0) = (a; a/2)
  4. Tính độ dài của vectơ AM: |AM| = √((a)^2 + (a/2)^2) = √(a^2 + a^2/4) = √(5a^2/4) = (a√5)/2

Vậy độ dài của vectơ AM là (a√5)/2.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và tính chất của vectơ.
  • Luyện tập thường xuyên các phép toán vectơ.
  • Sử dụng hình vẽ để minh họa và hiểu rõ bài toán.
  • Áp dụng các công thức và định lý liên quan.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn học toán để trao đổi và học hỏi kinh nghiệm.

Kết luận

Bài 2.17 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 10