Bài 6.28 trang 21 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.28 trang 21, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sqrt { - {x^2} + 77x - 212} = \sqrt {{x^2} + x - 2} \)
b) \(\sqrt {{x^2} + 25x - 26} = \sqrt {x - {x^2}} \)
c) \(\sqrt {4{x^2} + 8x - 37} = \sqrt { - {x^2} - 2x + 3} \)
Phương pháp giải - Xem chi tiết
Giải PT dạng \(\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \) (1)
Bước 1: Bình phương 2 vế của (1) ta được PT \((a - d){x^2} + (b - 2de)x + (c - {e^2}) = 0\) (2)
Bước 2: Giải PT (2)
Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào PT (1) để tìm ra các nghiệm thỏa mãn rồi kết luận
Lời giải chi tiết
a) \(\sqrt { - {x^2} + 77x - 212} = \sqrt {{x^2} + x - 2} \) (1)
Bình phương 2 vế của (1) ta được:
\( - {x^2} + 77x - 212 = {x^2} + x - 2\) \( \Leftrightarrow 2{x^2} - 76x + 210 = 0\)\( \Leftrightarrow x = 3\) hoặc x = 35
+) Thay x = 3 vào PT (1): \(\sqrt { - {3^2} + 77.3 - 212} = \sqrt {{3^2} + 3 - 2} \Leftrightarrow \sqrt {10} = \sqrt {10} \) , thỏa mãn
+) Thay x = 35 vào PT (1): \(\sqrt { - {{35}^2} + 77.35 - 212} = \sqrt {{{35}^2} + 35 - 2} \Leftrightarrow \sqrt {1258} = \sqrt {1258} \), thỏa mãn
Vậy PT (1) có 2 nghiệm là x = 3; x = 35
b) \(\sqrt {{x^2} + 25x - 26} = \sqrt {x - {x^2}} \) (2)
Bình phương 2 vế của (2) ta được:
\({x^2} + 25x - 26 = x - {x^2} \Leftrightarrow 2{x^2} + 24x - 26 = 0 \Leftrightarrow x = - 13\) hoặc x = 1
+) Thay x = -13 vào PT (2): \(\sqrt {{{( - 13)}^2} + 25.( - 13) - 26} = \sqrt {( - 13) - {{( - 13)}^2}} \Leftrightarrow \sqrt { - 182} = \sqrt { - 182} \), vô lí
+) Thay x = 1 vào PT (2): \(\sqrt {{1^2} + 25.1 - 26} = \sqrt {1 - {1^2}} \Leftrightarrow \sqrt 0 = \sqrt 0 \), thỏa mãn
Vậy PT (2) có nghiệm duy nhất x = 1
c) \(\sqrt {4{x^2} + 8x - 37} = \sqrt { - {x^2} - 2x + 3} \) (3)
Bình phương 2 vế của (3) ta được:
\(4{x^2} + 8x - 37 = - {x^2} - 2x + 3 \Leftrightarrow 5{x^2} + 10x - 40 = 0 \Leftrightarrow x = - 4\) hoặc x = 2
+) Thay x = -4 vào PT (3): \(\sqrt {4.{{( - 4)}^2} + 8.( - 4) - 37} = \sqrt { - {{( - 4)}^2} - 2.( - 4) + 3} \Leftrightarrow \sqrt { - 5} = \sqrt { - 5} \), vô lí
+) Thay x = 2 vào PT (3): \(\sqrt {{{4.2}^2} + 8.2 - 37} = \sqrt { - {2^2} - 2.2 + 3} \Leftrightarrow \sqrt { - 5} = \sqrt { - 5} \), vô lí
Vậy PT (3) vô nghiệm
Bài 6.28 trang 21 sách bài tập Toán 10 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, bài toán sẽ cho một hình vẽ hoặc một số thông tin về các điểm, đường thẳng và yêu cầu chúng ta tính toán một đại lượng nào đó liên quan đến vectơ.
Để giải bài 6.28 trang 21, chúng ta sẽ thực hiện theo các bước sau:
Ví dụ, giả sử bài toán yêu cầu chúng ta tính độ dài của một đoạn thẳng. Chúng ta có thể sử dụng công thức tính độ dài của một đoạn thẳng dựa trên tọa độ của hai điểm đầu mút của đoạn thẳng đó.
Giả sử chúng ta có hai điểm A(xA, yA) và B(xB, yB). Độ dài của đoạn thẳng AB được tính theo công thức:
AB = √((xB - xA)2 + (yB - yA)2)
Khi giải bài tập về vectơ, chúng ta cần chú ý đến các điều kiện của bài toán và lựa chọn phương pháp giải phù hợp. Ngoài ra, chúng ta cũng cần kiểm tra lại kết quả để đảm bảo tính chính xác.
Để rèn luyện kỹ năng giải bài tập về vectơ, các em có thể tham khảo một số bài tập tương tự sau:
Bài 6.28 trang 21 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.
Công thức | Mô tả |
---|---|
AB = √((xB - xA)2 + (yB - yA)2) | Độ dài đoạn thẳng AB |
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ a và b |