Logo Header
  1. Môn Toán
  2. Giải bài 9.10 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 9.10 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 9.10 trang 66 Sách bài tập Toán 10 - Kết nối tri thức

Bài 9.10 trang 66 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học phẳng.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.10 trang 66, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.

Đề bài

Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.

Phương pháp giải - Xem chi tiếtGiải bài 9.10 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).

Lời giải chi tiết

Ta có \(\Omega = \left\{ {\left( {a,b,c} \right)} \right\}\), trong đó \(a \in \left\{ {1;2;3} \right\},b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( \Omega \right) = 3.4.6 = 72\).

Gọi A là biến cố đang xét. Ta có \(A = \left\{ {\left( {a,b,c} \right),a + b + c = 2k + 1\left( {k \in \mathbb{Z}} \right)} \right\}\).

Vậy \(A = \left\{ {\left( {2,b,c} \right)} \right\}\) trong đó \(b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( A \right) = 1.4.6 = 24\).

Vậy \(P\left( A \right) = \frac{{24}}{{72}} = \frac{1}{3}\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 9.10 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 9.10 trang 66 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 9.10 sách bài tập Toán 10 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài này, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Cách tính và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán tìm điểm, đường thẳng.

Phân tích bài toán

Trước khi đi vào giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Bài 9.10 thường yêu cầu chúng ta:

  • Tìm một vectơ thỏa mãn một điều kiện nào đó.
  • Chứng minh một đẳng thức vectơ.
  • Tính độ dài của một vectơ.
  • Tìm tọa độ của một điểm hoặc vectơ.

Lời giải chi tiết

Dưới đây là lời giải chi tiết bài 9.10 trang 66 sách bài tập Toán 10 - Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và sử dụng hình vẽ minh họa nếu cần thiết. Ví dụ:)

Ví dụ (giả định): Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

  1. Phân tích: Ta cần chứng minh một đẳng thức vectơ.
  2. Giải:

    Vì M là trung điểm của BC, ta có BM = MC. Do đó, BC = 2BM.

    Ta có: AB + AC = AB + BC + CA = AB + 2BM + CA.

    BM = AM, ta có: AB + AC = AB + 2AM + CA.

    Do đó, AB + AC = 2AM.

Lưu ý khi giải bài tập vectơ

Để giải bài tập vectơ một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Vẽ hình minh họa để dễ hình dung bài toán.
  • Sử dụng các quy tắc và tính chất của vectơ một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.

Kết luận

Bài 9.10 trang 66 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán vectơ. Hy vọng với lời giải chi tiết và những lưu ý trên, bạn sẽ tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng.
Tích vô hướngMột phép toán giữa hai vectơ.

Tài liệu, đề thi và đáp án Toán 10