Bài 4.24 trang 58 sách bài tập Toán 10 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.24 trang 58, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong mặt phẳng tọa độ Oxy cho hai điểm M( - 2;1) và N(4;5).
Đề bài
Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( - 2;1)\) và \(N(4;5).\)
a) Tìm tọa độ của điểm \(P\) thuộc \(Ox\) sao cho \(PM = PN.\)
b) Tìm tọa độ của điểm \(Q\) sao cho \(\overrightarrow {MQ} = 2\overrightarrow {PN} .\)
c) Tìm tọa độ của điểm \(R\) thỏa mãn \(\overrightarrow {RM} + 2\overrightarrow {RN} = \overrightarrow 0 .\) Từ đó suy ra \(P,\,\,Q,\,\,R\) thẳng hàng.
Lời giải chi tiết
a) Vì điểm \(P\) thuộc \(Ox\) nên tọa độ điểm \(P\) là: \(P(x;0)\)
Ta có: \(PM = PN\,\, \Leftrightarrow \,\,\left| {\overrightarrow {PM} } \right| = \left| {\overrightarrow {PN} } \right|\)
\(\begin{array}{l} \Leftrightarrow \,\,\sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {0 - 1} \right)}^2}} = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {0 - 5} \right)}^2}} \\ \Leftrightarrow \,\,\sqrt {{x^2} + 4x + 4 + 1} = \sqrt {{x^2} - 8x + 16 + 25} \\ \Leftrightarrow \,\,{x^2} + 4x + 5 = {x^2} - 8x + 41\\ \Leftrightarrow \,\,12x = 36\,\, \Leftrightarrow \,\,x = 3\end{array}\)
Vậy \(P(3;0)\)
b) Gọi tọa độ điểm \(Q\) là: \(Q(x;y)\)
Ta có: \(\overrightarrow {MQ} = 2\overrightarrow {PN} \,\, \Leftrightarrow \,\,(x + 2;y - 1) = 2(4 - 3;5 - 0)\)
\(\begin{array}{l} \Leftrightarrow \,\,\left( {x + 2;y - 1} \right) = (2;10)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + 2 = 2}\\{y - 1 = 10}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 11}\end{array}} \right.} \right.\end{array}\)
Vậy \(Q(0;11)\)
c) Gọi tọa độ điểm \(R\) là: \(R(x;y)\)
Ta có: \(\overrightarrow {RM} + 2\overrightarrow {RN} = \overrightarrow 0 \,\, \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + 2\left( {4 - x;5 - y} \right) = \left( {0;0} \right)\)
\(\begin{array}{l} \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + \left( {8 - 2x;10 - 2y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left( {6 - 3x;11 - 3y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6 - 3x = 0}\\{11 - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = \frac{{11}}{3}}\end{array}} \right.} \right.\end{array}\)
Vậy \(R\left( {2;\frac{{11}}{3}} \right)\)
Ta có: \(\overrightarrow {PQ} = \left( { - 3;11} \right),\,\,\overrightarrow {PR} = \left( { - 1;\frac{{11}}{3}} \right)\) \( \Rightarrow \) \(\overrightarrow {PQ} \) và \(\overrightarrow {PR} \) cùng phương
\( \Rightarrow \) \(P,\,\,Q,\,\,R\) thẳng hàng
Bài 4.24 trang 58 sách bài tập Toán 10 Kết nối tri thức với cuộc sống yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Nội dung bài toán: (Giả sử bài toán yêu cầu chứng minh một đẳng thức vectơ hoặc tính một góc trong hình học)
Để giải bài toán này, chúng ta sẽ thực hiện các bước sau:
(Phần này sẽ trình bày lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác. Ví dụ:)
Ví dụ: Giả sử bài toán yêu cầu chứng minh rằng vectơ AB = vectơ CD.
Lời giải:
Để chứng minh vectơ AB = vectơ CD, chúng ta cần chứng minh rằng hai vectơ này có cùng độ dài và cùng hướng. Điều này có thể được thực hiện bằng cách:
Nếu độ dài và hướng của hai vectơ AB và CD bằng nhau, thì chúng ta có thể kết luận rằng vectơ AB = vectơ CD.
Ngoài bài 4.24 trang 58, sách bài tập Toán 10 Kết nối tri thức với cuộc sống còn có nhiều bài tập tương tự khác. Các bài tập này thường yêu cầu học sinh vận dụng các kiến thức về vectơ để giải quyết các bài toán về hình học, vật lý và các lĩnh vực khác.
Để nắm vững kiến thức về vectơ và có thể giải quyết các bài tập một cách hiệu quả, chúng ta cần:
Để học tập và ôn luyện kiến thức về vectơ, các em học sinh có thể tham khảo các tài liệu sau:
Bài 4.24 trang 58 sách bài tập Toán 10 Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.