Logo Header
  1. Môn Toán
  2. Giải bài 7.33 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 7.33 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 7.33 trang 46 Sách bài tập Toán 10 - Kết nối tri thức

Bài 7.33 trang 46 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Viết phương trình chính tắc của parabol

Đề bài

Viết phương trình chính tắc của parabol \(\left( P \right)\), biết rằng \(\left( P \right)\) có đường chuẩn là đường thẳng \(\Delta :x + 4 = 0\). Tìm tọa độ điểm M thuộc \(\left( P \right)\) sao cho khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5

Phương pháp giải - Xem chi tiếtGiải bài 7.33 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

+ Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x = - \frac{p}{2}\)

+ Dựa vào khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5

Lời giải chi tiết

+ Phương trình chính tắc của \(\left( P \right)\) có dạng \({y^2} = 2px\), trong đó \(p > 0\)

+ \(\left( P \right)\) có đường chuẩn \(\Delta :x + 4 = 0 \Rightarrow x = - 4 \Rightarrow - \frac{p}{2} = - 4 \Rightarrow p = 8\)

\( \Rightarrow \) Phương trình chính tắc của \(\left( P \right)\) là \({y^2} = 16x\)

+ Gọi \(M\left( {{x_0};{y_0}} \right)\). Có \(M \in \left( P \right)\) nên ta có:

\(d\left( {M,\Delta } \right) = MF = 5 = \frac{{\left| {{x^0} + 4} \right|}}{{\sqrt {{1^2} + 0} }} \Rightarrow \left| {{x^0} + 4} \right| = 5 \Rightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 9\end{array} \right.\)

+ \({x_0} = - 9 \Rightarrow y_0^2 = 16\left( { - 9} \right) = - 144\) à Phương trình vô nghiệm

+ \({x_0} = 1 \Rightarrow y_0^2 = 16.1 = 16 \Rightarrow \left[ \begin{array}{l}{y_0} = 4\\{y_0} = - 4\end{array} \right.\)

Vậy \(M\left( {1;4} \right)\) hoặc \(M\left( {1; - 4} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 7.33 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 7.33 trang 46 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.33 trang 46 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải hiểu rõ về vectơ, các phép toán vectơ và cách áp dụng chúng vào giải quyết vấn đề. Dưới đây là hướng dẫn chi tiết cách giải bài toán này:

1. Tóm tắt đề bài

Đề bài yêu cầu gì? Các dữ kiện quan trọng nào được cung cấp? Việc tóm tắt đề bài giúp học sinh xác định rõ mục tiêu và các thông tin cần thiết để giải quyết bài toán.

2. Phân tích bài toán và lựa chọn phương pháp giải

Bài toán này thuộc dạng nào? Có thể sử dụng kiến thức nào để giải quyết? Việc phân tích bài toán giúp học sinh lựa chọn phương pháp giải phù hợp và hiệu quả nhất.

3. Giải bài toán chi tiết

Dưới đây là lời giải chi tiết bài 7.33 trang 46 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống:

  1. Bước 1: Xác định các vectơ liên quan đến bài toán.
  2. Bước 2: Thực hiện các phép toán vectơ cần thiết (cộng, trừ, nhân với một số thực).
  3. Bước 3: Sử dụng các công thức và định lý liên quan đến vectơ để tính toán.
  4. Bước 4: Kiểm tra lại kết quả và đảm bảo tính hợp lý.

4. Ví dụ minh họa

Để giúp học sinh hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa cụ thể:

Ví dụ: Cho tam giác ABC, với A(0;0), B(1;2), C(3;1). Tìm tọa độ của điểm D sao cho ABCD là hình bình hành.

Giải:

  • Vì ABCD là hình bình hành, nên vectơ AB = vectơ DC.
  • Vectơ AB = (1-0; 2-0) = (1; 2).
  • Gọi D(x; y). Vectơ DC = (3-x; 1-y).
  • Suy ra: 3-x = 1 và 1-y = 2.
  • Giải hệ phương trình, ta được: x = 2 và y = -1.
  • Vậy, D(2; -1).

5. Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.

6. Lưu ý quan trọng

Khi giải các bài tập về vectơ, học sinh cần lưu ý:

  • Hiểu rõ định nghĩa và các tính chất của vectơ.
  • Nắm vững các phép toán vectơ và cách thực hiện chúng.
  • Áp dụng kiến thức vào giải quyết các bài toán thực tế một cách linh hoạt.

7. Tổng kết

Bài 7.33 trang 46 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải quyết các bài toán ứng dụng vectơ. Hy vọng với hướng dẫn chi tiết này, học sinh sẽ tự tin hơn trong việc học tập và giải bài tập.

Giaitoan.edu.vn luôn đồng hành cùng học sinh trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10