Bài 2.28 trang 27 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, phép toán vectơ để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.28 trang 27 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hỏi số tiền lãi lớn nhất mà phân xưởng này có thể thu được trong một ngày là bao nhiêu?
Đề bài
Một phân xưởng có hai loại máy chuyên dụng \({M_1}\) và \({M_2}\) để sản xuất hai loại sản phẩm A và B theo đơn đặt hàng. Nếu sản xuất được một tấn sản phẩm loại A thì phân xưởng nhận được số tiền lãi là 2 triệu đồng. Nếu sản xuất được một tấn sản phẩm loại B thì phân xưởng nhận được số tiền lãi là 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại A, người ta phải dùng máy \({M_1}\) trong 3 giờ và máy \({M_2}\) trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại B, người ta phải dùng máy \({M_1}\) trong 1 giờ và máy \({M_2}\) trong 1 giờ. Một máy không thể dùng sản xuất đồng thời hai loại sản phẩm. Máy \({M_1}\) làm việc không quá 6 giờ một ngày và máy \({M_2}\) làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà phân xưởng này có thể thu được trong một ngày là bao nhiêu?
Phương pháp giải - Xem chi tiết
- Viết hệ bất phương trình của bài toán nói trên
- Xác định miền nghiệm của hệ bất phương trình
- Viết biểu thức biểu thị số tiền lại phân xưởng thu được đạt giá trị lớn nhất
Lời giải chi tiết
Điều kiện: \(x \ge 0;\,\,y \ge 0.\)
Thời gian máy \({M_1}\) làm việc không quá 6 giờ một ngày là: \(3x + y \le 6.\)
Thời gian máy \({M_2}\) làm việc không quá 4 giờ một ngày là: \(x + y \le 4.\)
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{3x + y \le 6}\\{x + y \le 4}\end{array}.} \right.\)
Số tiền lãi phân xưởng này thu được trong một ngày là: \(F\left( {x;y} \right) = 2x + 1,6y \to \max \)
Miền nghiệm của bất phương trình \(d:x \ge 0\) là nửa mặt phẳng bờ \(d\) chứa điểm \(\left( {1;0} \right).\)
Miền nghiệm của bất phương trình \({d_1}:y \ge 0\) là nửa mặt phẳng bờ \({d_1}\) chứa điểm \(\left( {0;1} \right).\)
Miền nghiệm của bất phương trình \(3x + y \le 6\) là nửa mặt phẳng bờ \({d_2}:3x + y = 6\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(x + y \le 4\) là nửa mặt phẳng bờ \({d_3}:x + y = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{3x + y \le 6}\\{x + y \le 4}\end{array}} \right.\) là tứ giác \(OABC\) với \(A\left( {2;0} \right),\) \(B\left( {1;3} \right),\,\,C\left( {0;4} \right).\)
\(F\left( {1;3} \right) = 2.1 + 1,6.3 = 6,8;\) \(F\left( {0;4} \right) = 2.0 + 1,6.4 = 6,4.\)
Vậy số tiền lãi lớn nhất phân xưởng này thu được trong một ngày là: 6,8 triệu đồng.
Bài 2.28 trang 27 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Nội dung bài tập: Bài 2.28 thường yêu cầu học sinh thực hiện các thao tác như:
Để giải bài 2.28 trang 27, chúng ta cần phân tích đề bài một cách cẩn thận và xác định các yếu tố quan trọng. Sau đó, áp dụng các kiến thức đã học để tìm ra lời giải chính xác.
Ví dụ minh họa (giả định bài tập):
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính:
Giải:
Lưu ý:
Các bài tập tương tự:
Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Ứng dụng của vectơ trong thực tế:
Vectơ có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Hy vọng với lời giải chi tiết và dễ hiểu này, các em học sinh sẽ tự tin hơn khi giải bài 2.28 trang 27 Sách bài tập Toán 10 - Kết nối tri thức và các bài tập tương tự. Chúc các em học tốt!