Bài 6.16 trang 14 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.16 trang 14 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Xác định dấu của các hệ số a, b, c và dấu của biệt thức
Đề bài
Xác định dấu của các hệ số a, b, c và dấu của biệt thức \(\Delta = {b^2} - 4ac\) của hàm số bậc hai \(y = a{x^2} + bx + c\), biết đồ thị của nó có dạng như Hình 6.16.
Phương pháp giải - Xem chi tiết
Bước 1: Dựa vào chiều bề lõm quay lên trên/ xuống dưới để tìm dấu của hệ số a
Bước 2: Xét dấu của tung độ giao điểm của ĐTHS với trục Oy để tìm dấu của hệ số c
Bước 3: Xét dấu tọa độ đỉnh của parabol để xét dấu các biểu thức \( - \frac{b}{{2a}}\) và \( - \frac{\Delta }{{4a}}\). Từ đó suy ra dấu của hệ số b và ∆
Lời giải chi tiết
- Do parabol có bề lõm quay lên trên nên a > 0
- ĐTHS cắt trục tung tại điểm có tung độ dương nên c > 0
- Đỉnh parabol có hoành độ dương, tung độ âm nên ta có \(\left\{ \begin{array}{l} - \frac{b}{{2a}} > 0\\ - \frac{\Delta }{{4a}} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b < 0\\\Delta > 0\end{array} \right.\) (do a > 0)
Vậy a > 0, b < 0, c > 0, ∆ > 0.
Bài 6.16 trang 14 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 6.16 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6.16 trang 14, chúng ta sẽ cùng nhau phân tích và giải bài tập này một cách chi tiết. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, các công thức sử dụng và các giải thích rõ ràng. Ví dụ:)
Ví dụ: Giả sử bài tập yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Ta có thể sử dụng tính chất của hình bình hành: vectơ AB = vectơ DC và vectơ AD = vectơ BC. Để chứng minh điều này, ta cần tính các vectơ AB, DC, AD, BC và so sánh chúng.
Bước 1: Xác định tọa độ của các điểm A, B, C, D trong hệ tọa độ.
Bước 2: Tính các vectơ AB, DC, AD, BC theo tọa độ của các điểm.
Bước 3: So sánh các vectơ AB và DC, AD và BC. Nếu AB = DC và AD = BC, thì tứ giác ABCD là hình bình hành.
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh có thể tham khảo một số mẹo sau:
Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 6.16 trang 14 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc giải quyết các bài toán về vectơ.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho ra một số thực. |