Logo Header
  1. Môn Toán
  2. Giải bài 3.9 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.9 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 3.9 trang 39 Sách bài tập Toán 10 - Kết nối tri thức

Bài 3.9 trang 39 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.9 trang 39, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

a) Tính các góc và các cạnh còn lại của tam giác. b) Tính diện tích của tam giác. c) Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác.

Đề bài

Cho tam giác \(ABC\) có \(a = 4,\,\,\widehat C = {60^ \circ },\,\,b = 5.\)

a) Tính các góc và các cạnh còn lại của tam giác.

b) Tính diện tích của tam giác.

c) Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác.

Phương pháp giải - Xem chi tiếtGiải bài 3.9 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

- Áp dụng định lý cosin để tính cạnh \({c^2} = a{}^2 + {b^2} - 2ab.\cos C\)

- Áp dụng định lý cosin để tính các góc \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) và \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

- Diện tích \(\Delta ABC\) là \(S = \frac{1}{2}ab\sin C\)

- Tính độ dài đường trung tuyến \(m_a^2 = \frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}\)

Lời giải chi tiết

a) Áp dụng định lý cosin, ta có:

\(\begin{array}{l}{c^2} = a{}^2 + {b^2} - 2ab.\cos C\\{c^2} = {4^2} + {5^2} - 2.4.5.\cos {60^ \circ }\\{c^2} = 16 + 25 - 40.\frac{1}{2} = 21\,\, \Rightarrow \,\,c = \sqrt {21} \end{array}\)

Áp dụng định lý cosin, ta có:

\(\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}\\{\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{25 + 21 - 16}}{{10\sqrt {21} }}}\\{\cos B = \frac{{16 + 21 - 25}}{{8\sqrt {21} }}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{3}{{\sqrt {21} }}}\\{\cos B = \frac{2}{{3\sqrt {21} }}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A \approx {{49}^ \circ }}\\{\widehat B \approx {{71}^ \circ }}\end{array}} \right.} \right.} \right.} \right.\)

b) Diện tích \(\Delta ABC\) là \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.4.5.\sin {60^ \circ } = \frac{1}{2}.4.5.\frac{{\sqrt 3 }}{2} = 5\sqrt 3 \)(đvdt)

c) Độ dài đường trung tuyến từ đỉnh A của \(\Delta ABC\) là:

\(\begin{array}{l}m_a^2 = \frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}\\m_a^2 = \frac{{25 + 21}}{2} - \frac{{16}}{4}\\m_a^2 = 23 - 4 = 19\\ \Rightarrow \,\,{m_a} = \sqrt {19} .\end{array}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3.9 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3.9 trang 39 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 3.9 trang 39 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong mặt phẳng. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Hệ tọa độ trong mặt phẳng: Biểu diễn vectơ bằng tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.

Phân tích bài toán và tìm hướng giải quyết

Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, các bài toán về vectơ có thể được giải bằng các phương pháp sau:

  1. Phương pháp hình học: Sử dụng các tính chất hình học của vectơ để giải quyết bài toán.
  2. Phương pháp tọa độ: Sử dụng hệ tọa độ để biểu diễn vectơ và thực hiện các phép toán vectơ trong hệ tọa độ.
  3. Phương pháp vectơ: Sử dụng các định lý và tính chất của vectơ để giải quyết bài toán.

Lời giải chi tiết bài 3.9 trang 39

(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.)

Lời giải:

Ta có: AM = AB + BM

Vì M là trung điểm của BC nên BM = MC = 1/2 BC

BC = AC - AB

Do đó, BM = 1/2 (AC - AB)

Thay vào phương trình ban đầu, ta được:

AM = AB + 1/2 (AC - AB) = AB + 1/2 AC - 1/2 AB = 1/2 AB + 1/2 AC

Vậy AM = 1/2 (AB + AC)

Luyện tập và củng cố kiến thức

Để củng cố kiến thức về vectơ và các phép toán vectơ, các em có thể tự giải thêm các bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức với cuộc sống. Ngoài ra, các em cũng có thể tham khảo các tài liệu học tập trực tuyến hoặc tìm kiếm sự giúp đỡ của giáo viên và bạn bè.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, như vật lý, kỹ thuật, đồ họa máy tính, và thậm chí cả trong cuộc sống hàng ngày. Ví dụ, vectơ được sử dụng để biểu diễn vận tốc, gia tốc, lực, và các đại lượng vật lý khác. Trong kỹ thuật, vectơ được sử dụng để thiết kế các công trình xây dựng, điều khiển robot, và phân tích dữ liệu.

Kết luận

Bài 3.9 trang 39 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp các em học sinh hiểu rõ hơn về vectơ và các phép toán vectơ. Hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em sẽ tự tin hơn trong việc học tập môn Toán 10.

Tài liệu, đề thi và đáp án Toán 10