Logo Header
  1. Môn Toán
  2. Giải bài 6.13 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.13 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức

Bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Tìm tập xác định và tập giá trị của các hàm số bậc hai sau:

Đề bài

Tìm tập xác định và tập giá trị của các hàm số bậc hai sau:

a) \(f(x) = - {x^2} + 4x - 3\)

b) \(f(x) = {x^2} - 7x + 12\)

Phương pháp giải - Xem chi tiếtGiải bài 6.13 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Hàm số bậc hai \(y = a{x^2} + bx + c(a \ne 0)\) có tập xác định là \(\mathbb{R}\) và có tập giá trị là \(\left[ { - \frac{\Delta }{{4a}}; + \infty } \right)\) (Nếu a > 0) hoặc \(\left( { - \infty ; - \frac{\Delta }{{4a}}} \right]\) (Nếu a < 0)

Lời giải chi tiết

a) Hàm số \(f(x) = - {x^2} + 4x - 3\) có tập xác định là D = \(\mathbb{R}\)

Do a = -1 < 0, ∆ = 4 nên hàm số \(f(x) = - {x^2} + 4x - 3\) có tập giá trị là \(\left( { - \infty ;1} \right]\)

b) Hàm số \(f(x) = {x^2} - 7x + 12\) có tập xác định là D = \(\mathbb{R}\)

Do a = 1 > 0, ∆ = 1 nên hàm số \(f(x) = {x^2} - 7x + 12\)có tập giá trị là \(\left[ { - \frac{1}{4}; + \infty } \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6.13 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán 10 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 6.13 trang 14

Bài 6.13 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ mới.
  3. Sử dụng tích vô hướng để chứng minh các mối quan hệ giữa các vectơ.
  4. Giải các bài toán liên quan đến hình học phẳng hoặc không gian.

Lời giải chi tiết bài 6.13 trang 14

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6.13 trang 14, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Ta có thể sử dụng các vectơ để chứng minh điều này như sau:

Bước 1: Xác định các vectơ liên quan đến tứ giác ABCD, ví dụ: AB, DC, AD, BC.

Bước 2: Chứng minh rằng AB = DCAD = BC. Điều này có nghĩa là hai vectơ đối diện của tứ giác ABCD bằng nhau.

Bước 3: Kết luận rằng tứ giác ABCD là hình bình hành.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Luyện tập thường xuyên các phép toán vectơ.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ hình.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, chẳng hạn như:

  • Vật lý: Vectơ được sử dụng để biểu diễn các đại lượng vật lý như vận tốc, gia tốc, lực.
  • Công nghệ: Vectơ được sử dụng trong đồ họa máy tính, robot học, và các hệ thống điều khiển.
  • Địa lý: Vectơ được sử dụng để biểu diễn hướng và khoảng cách trên bản đồ.

Tổng kết

Bài 6.13 trang 14 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán 10.

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối.
Tích vô hướngMột phép toán giữa hai vectơ, cho ra một số thực.

Tài liệu, đề thi và đáp án Toán 10