Bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tam giác ABC có các góc thỏa mãn
Đề bài
Cho tam giác \(ABC\) có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}.\) Tính số đo các góc của tam giác.
Phương pháp giải - Xem chi tiết
- Áp dụng định lý sin để tìm \(AB,\,\,AC,\,\,BC.\)
- Áp dụng định lý cosin để tính các góc \(A,\,\,B,\,\,C.\)
Lời giải chi tiết
Áp dụng định lý sin cho \(\Delta ABC\) có \(\frac{{\sin A}}{{BC}} = \frac{{\sin B}}{{AC}} = \frac{{\sin C}}{{AB}}\)
Mặt khác \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}.\)
Nên \(BC:AC:AB = 1:2:\sqrt 3 \)
Chọn \(BC = 1,\,\,AC = 2,\,\,AB = \sqrt 3 .\)
Áp dụng định lý cosin, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}}\\{\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}}\\{\widehat C = {{180}^ \circ } - \widehat A - \widehat B}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{3 + 4 - 1}}{{2.2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}}\\{\cos B = \frac{{3 + 1 - 4}}{{2.\sqrt 3 }} = 0}\\{\widehat C = {{180}^ \circ } - \widehat A - \widehat B}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A = {{30}^0}}\\{\widehat B = {{90}^ \circ }}\\{\widehat C = {{60}^ \circ }}\end{array}} \right.} \right.} \right.\)
Bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ, cụ thể là việc xác định mối quan hệ giữa các vectơ và tính toán độ dài của chúng. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, đề bài sẽ cung cấp thông tin về các điểm, các vectơ hoặc các đoạn thẳng. Yêu cầu của bài toán có thể là tính độ dài của một vectơ, tìm góc giữa hai vectơ, chứng minh một đẳng thức vectơ hoặc giải một bài toán hình học sử dụng vectơ.
Để giải bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức, chúng ta sẽ thực hiện các bước sau:
Giả sử bài toán yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức sau để tính độ dài của vectơ AB:
|AB| = √((x2 - x1)² + (y2 - y1)²)
Khi giải các bài toán về vectơ, chúng ta cần chú ý đến các điểm sau:
Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 10 Kết nối tri thức hoặc trên các trang web học toán online. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài toán về vectơ.
Bài 3.15 trang 39 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bằng cách nắm vững các khái niệm cơ bản, phân tích bài toán một cách cẩn thận và thực hiện các phép toán vectơ một cách chính xác, bạn có thể giải quyết bài toán này một cách dễ dàng. Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp bạn học Toán 10 hiệu quả hơn.