Bài 9.27 trang 69 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.27 trang 69, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên ngồi xung quanh một chiếc bàn tròn.
Đề bài
Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên ngồi xung quanh một chiếc bàn tròn.
a) Không gian mẫu có bao nhiêu phần tử. Hai cách xếp chỗ ngồi quanh bàn tròn được coi là như nhau nếu đối với mỗi người A trong nhóm, trong hai cách xếp đó, người ngồi bên trái A và bên phải A không thay đồi.
b) Tính xác suất để hai vợ chồng ông bà An ngồi cạnh nhau
Lời giải chi tiết
a) Mỗi cách xếp chỗ ngồi quanh bàn tròn là một phần tử của không gian mẫu.
Giả sử 6 chiếc ghế quanh bàn tròn được đánh số là 1, 2, ..., 6 và \({x_i}\) kí hiệu là người ngồi ở ghế mang số \(i\). Khi đó mỗi cách xếp 6 người này \(\left( {{x_1},{x_2},{x_3},{x_4},{x_5},{x_6}} \right)\) cho ta một hoán vị của tập hợp 6 người. Có tất cả 6! cách xếp chỗ ngồi cho họ.
Vì ngồi xung quanh một chiếc bàn tròn nên 6 cách xếp sau đây được xem là giống nhau. Mặc dù số ghế họ ngôi có thay đổi những vị trí tương đối giữa 6 người đó là không thay đồi.
\(\begin{array}{l}\left( {{x_1},{x_2},{x_3},{x_4},{x_5},{x_6}} \right){\rm{ }}\left( {{x_2},{x_3},{x_4},{x_5},{x_6},{x_1}} \right){\rm{ }}\left( {{x_3},{x_4},{x_5},{x_6},{x_1},{x_2}} \right)\\\left( {{x_4},{x_5},{x_6},{x_1},{x_2},{x_3}} \right){\rm{ }}\left( {{x_5},{x_6},{x_1},{x_2},{x_3},{x_4}} \right){\rm{ }}\left( {{x_6},{x_1},{x_2},{x_3},{x_4},{x_5}} \right)\end{array}\)
Vậy có \(\frac{{6!}}{6} = 5!\)= 120 cách xếp. Do đó \(n\left( \Omega \right) = 120\).
b) Gọi E là biến Cố: “Hai ông bà An ngồi cạnh nhau". Ta hãy tính xem có bao nhiều cách xếp trong đó hai ông bà An ngồi cạnh nhau.
Ta coi hai ông bà An ngồi chung một ghề. Như vậy có (5 – 1)! = 4! = 24 cách xếp.
Vì hai ông bà An có thề đồi chỗ cho nhau nên có 24.2= 48 cách xếp đề hai ông bà An ngồi cạnh nhau.
Vậy n(E) = 48. Từ đó P(E) = \(\frac{{48}}{{120}} = \frac{2}{5}\).
Bài 9.27 trang 69 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm, các vectơ hoặc các đoạn thẳng trong hình học. Nhiệm vụ của chúng ta là sử dụng các kiến thức đã học để tìm ra các đại lượng cần tìm, chẳng hạn như độ dài đoạn thẳng, góc giữa hai vectơ, hoặc tọa độ của một điểm.
Để giúp các em học sinh hiểu rõ hơn về cách giải bài toán 9.27 trang 69, chúng ta sẽ đi vào giải bài toán một cách chi tiết. Dưới đây là các bước giải bài toán:
Giả sử bài toán 9.27 yêu cầu tính độ dài của đoạn thẳng AB, biết tọa độ của điểm A là (xA, yA) và tọa độ của điểm B là (xB, yB). Chúng ta có thể sử dụng công thức tính độ dài đoạn thẳng trong hệ tọa độ:
AB = √((xB - xA)2 + (yB - yA)2)
Vectơ là một công cụ mạnh mẽ trong hình học, được sử dụng để giải quyết nhiều bài toán phức tạp. Một số ứng dụng của vectơ trong hình học bao gồm:
Bài 9.27 trang 69 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các phương pháp giải phù hợp, các em học sinh có thể tự tin giải quyết bài toán này một cách hiệu quả. Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em học sinh hiểu rõ hơn về bài toán và đạt kết quả tốt trong học tập.