Logo Header
  1. Môn Toán
  2. Giải bài 9.7 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 9.7 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 9.7 trang 66 Sách bài tập Toán 10 - Kết nối tri thức

Bài 9.7 trang 66 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.7 trang 66, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ.

Đề bài

Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ. Chọn ngẫu nhiên một khách. Biết rằng xác suất để chọn được một khách nữ là \(\frac{9}{{13}}\). Tìm x và y.

Phương pháp giải - Xem chi tiếtGiải bài 9.7 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).

Lời giải chi tiết

Ta có \(2x + y = 50 \Rightarrow y = 50 - 2x\). Sau một tiếng, trong quán có \(50 - \left( {y - 6} \right) + 2x - 5 = 51 + 2x - y\) người, trong đó có \(2x - 5 + y\) là nữ. Vậy ta có

\(\begin{array}{l}\frac{{2x - 5 + y}}{{51 + 2x - y}} = \frac{9}{{13}} \Leftrightarrow 8x + 22y = 524 \Leftrightarrow 4x + 11y = 262\\ \Leftrightarrow 4x + 11\left( {50 - 2x} \right) = 262 \Leftrightarrow 18x = 288 \Leftrightarrow x = 16\end{array}\)

Vậy \(x = 16 \Rightarrow y = 18\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 9.7 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 9.7 trang 66 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 9.7 trang 66 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và các phép toán trên vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:

  • Các điểm và vectơ đã cho: Xác định các điểm và vectơ được đề cập trong bài toán.
  • Yêu cầu của bài toán: Xác định rõ điều gì cần tìm (ví dụ: tính độ dài vectơ, tìm góc giữa hai vectơ, chứng minh một đẳng thức vectơ).
  • Các mối quan hệ giữa các yếu tố: Tìm hiểu mối quan hệ giữa các điểm, vectơ và các yếu tố khác trong bài toán.

Lời giải chi tiết

Dưới đây là lời giải chi tiết bài 9.7 trang 66 sách bài tập Toán 10 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng từng bước. Ví dụ:)

Ví dụ: Giả sử bài toán yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Ta có công thức:

|AB| = √((x2 - x1)² + (y2 - y1)²)

(Tiếp tục trình bày lời giải chi tiết cho bài toán cụ thể, bao gồm các bước tính toán, vẽ hình minh họa (nếu cần) và giải thích rõ ràng từng bước.)

Lưu ý khi giải bài tập

  • Vẽ hình: Vẽ hình minh họa giúp chúng ta hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng công thức: Nắm vững các công thức liên quan đến vectơ và áp dụng chúng một cách chính xác.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Rèn luyện thường xuyên: Giải nhiều bài tập tương tự giúp chúng ta nắm vững kiến thức và kỹ năng giải toán.

Ứng dụng của vectơ trong hình học

Vectơ là một công cụ mạnh mẽ trong hình học, được sử dụng để:

  • Biểu diễn các điểm và đường thẳng: Vectơ chỉ phương của đường thẳng, vectơ pháp tuyến của đường thẳng.
  • Tính toán khoảng cách: Khoảng cách giữa hai điểm, khoảng cách từ một điểm đến một đường thẳng.
  • Chứng minh các tính chất hình học: Chứng minh hai đường thẳng song song, vuông góc, hai tam giác đồng dạng, bằng nhau.
  • Giải các bài toán về diện tích và thể tích: Sử dụng tích có hướng của hai vectơ để tính diện tích hình bình hành, thể tích hình hộp.

Tổng kết

Bài 9.7 trang 66 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết bài toán này và các bài tập tương tự. Chúc các em học tốt!

Công thứcMô tả
|AB| = √((x2 - x1)² + (y2 - y1)²)Độ dài của vectơ AB
a.b = |a||b|cos(θ)Tích vô hướng của hai vectơ a và b

Tài liệu, đề thi và đáp án Toán 10