Logo Header
  1. Môn Toán
  2. Giải bài 4.26 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.26 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 4.26 trang 58 Sách bài tập Toán 10 - Kết nối tri thức

Bài 4.26 trang 58 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.26 trang 58, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Trong mặt phẳng tọa độ Oxy cho hai điểm C(1;6) và D(11;2).

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(C(1;6)\) và \(D(11;2).\)

a) Tìm tọa độ của điểm \(E\) thuộc trục tung sao cho vectơ \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.

b) Tìm tọa độ của điểm \(F\) thuộc trục hoành sao cho \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c) Tìm tập hợp các điểm \(M\) sao cho \(\left| {\overrightarrow {MC} + \overrightarrow {MD} } \right| = CD.\)

Lời giải chi tiết

a) Vì điểm \(E\) thuộc trục tung nên tọa độ điểm \(E\) là: \(E(0;y).\)

Ta có: \(\overrightarrow {EC} = (1;6 - y)\) và \(\overrightarrow {ED} = (11;2 - y).\)

Khi đó: \(\overrightarrow {EC} + \overrightarrow {ED} = (1;6 - y) + (11;2 - y) = (12;8 - 2y)\)

\( \Rightarrow \) \(\left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| = \sqrt {{{12}^2} + {{\left( {8 - 2y} \right)}^2}} = \sqrt {4{{\left( {y - 4} \right)}^2} + 144} \)

Do \(4{\left( {y - 4} \right)^2} \ge 0\,\,\forall y,\) đẳng thức xảy ra khi và chỉ khi \(y = 4,\) nên \(\left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| \ge 12,\) đẳng thức xảy ra khi và chỉ khi \(y = 4.\)

Vậy \(E(0;4)\) thì \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.

b) Vì điểm \(F\) thuộc trục hoành nên tọa độ điểm \(F\) là \(F(x;0).\)

Ta có: \(\overrightarrow {FC} = (1 - x;6)\) và \(\overrightarrow {FD} = (11 - x;2).\)

Khi đó: \(2\overrightarrow {FC} + 3\overrightarrow {FD} = 2(1 - x;6) + 3(11 - x;2) = (35 - 5x;18).\)

\( \Rightarrow \) \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right| = \sqrt {{{\left( {35 - 5x} \right)}^2} + {{18}^2}} = \sqrt {25{{\left( {x - 7} \right)}^2} + {{18}^2}} \)

Do \(25{\left( {x - 7} \right)^2} \ge 0\,\,\forall x,\) đẳng thức xảy ra khi và chỉ khi \(x = 7,\) nên \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right| \ge 18,\) đẳng thức xảy ra khi vào chỉ khi \(x = 7.\)

Vậy \(F(7;0)\) thì \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c) Ta có: \(CD = \left| {\overrightarrow {CD} } \right| = \sqrt {{{\left( {11 - 1} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 2\sqrt {29} \)

Gọi \(I\) là trung điểm của \(CD\) nên \(I(6;4)\)

Ta có: \(\overrightarrow {MC} + \overrightarrow {MD} = 2\overrightarrow {MI} \)

Khi đó: \(\left| {\overrightarrow {MC} + \overrightarrow {MD} } \right| = \left| {2\overrightarrow {MI} } \right| = CD = 2\sqrt {29} \,\, \Leftrightarrow \,\,2MI = 2\sqrt {29} \,\, \Leftrightarrow \,\,MI = \sqrt {29} \)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(MI = \sqrt {29} \)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4.26 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục học toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4.26 trang 58 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.26 trang 58 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ, thường là xác định mối quan hệ giữa các vectơ hoặc tính toán các đại lượng hình học sử dụng vectơ. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.

Phân tích bài toán và tìm hướng giải quyết

Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích bài toán để tìm ra mối liên hệ giữa các yếu tố đã cho và yêu cầu của bài toán. Việc vẽ hình minh họa có thể giúp học sinh hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.

Lời giải chi tiết bài 4.26 trang 58

(Giả sử bài toán cụ thể là: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.)

Lời giải:

Ta có: AM = AB + BM

Vì M là trung điểm của BC nên BM = MC = 1/2 BC

BC = AC - AB

Do đó, BM = 1/2 (AC - AB)

Thay vào phương trình ban đầu, ta được:

AM = AB + 1/2 (AC - AB) = 1/2 AB + 1/2 AC

Vậy AM = 1/2 (AB + AC)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 4.26, sách bài tập Toán 10 Kết nối tri thức còn nhiều bài tập tương tự về vectơ. Các bài tập này thường yêu cầu học sinh:

  • Chứng minh đẳng thức vectơ.
  • Tìm vectơ thỏa mãn một điều kiện cho trước.
  • Tính độ dài của vectơ.
  • Tính góc giữa hai vectơ.

Để giải các bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ và áp dụng linh hoạt các phép toán vectơ. Ngoài ra, việc vẽ hình minh họa và phân tích bài toán một cách cẩn thận cũng rất quan trọng.

Luyện tập thêm để nắm vững kiến thức

Để củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập, học sinh nên làm thêm các bài tập trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp một kho bài tập phong phú, đa dạng về vectơ, giúp học sinh luyện tập và nâng cao trình độ.

Kết luận

Bài 4.26 trang 58 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10