Bài 9.13 trang 67 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.13 trang 67, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc. a) Xác suất để An không đứng cuối hàng là:
Đề bài
Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc.
a) Xác suất để An không đứng cuối hàng là:
A. \(\frac{2}{3}\). B. \(\frac{1}{3}\). C.\(\frac{3}{5}\). D.\(\frac{2}{5}\).
b) Xác suất để Bình và Cường đứng cạnh nhau là
A. \(\frac{1}{4}\). B. \(\frac{2}{3}\). C. \(\frac{2}{5}\). D.\(\frac{1}{2}\).
c) Xác suất để An đứng giữa Bình và Cường là
A. \(\frac{2}{3}\). B. \(\frac{1}{3}\). C.\(\frac{3}{5}\). D.\(\frac{2}{5}\).
d) Xác suất để Bình đứng trước An là
A. \(\frac{1}{4}\). B. \(\frac{2}{3}\). C. \(\frac{2}{5}\). D.\(\frac{1}{2}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 3! = 6\).
a) Gọi X là biến cố “An không đứng cuối hàng”. Khi đó ta có
\(X = \left\{ {\left( {A,B,C} \right),\left( {A,C,B} \right),\left( {B,A,C} \right),\left( {C,A,B} \right)} \right\}\). Suy ra \(n\left( X \right) = 4\). Vậy \(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{2}{3}\).
Chọn A
b) Gọi Y là biến cố “Bình và Cường đứng cạnh nhau”. Khi đó ta có
\(Y = \left\{ {\left( {A,B,C} \right),\left( {A,C,B} \right),\left( {B,C,A} \right),\left( {C,B,A} \right)} \right\}\). Suy ra \(n\left( Y \right) = 4\). Vậy \(P\left( Y \right) = \frac{{n\left( Y \right)}}{{n\left( \Omega \right)}} = \frac{2}{3}\).
Chọn B
c) Gọi Z là biến cố “An đứng giữa Bình và Cường”. Khi đó ta có
\(Z = \left\{ {\left( {B,A,C} \right),\left( {C,A,B} \right)} \right\}\). Suy ra \(n\left( Z \right) = 2\). Vậy \(P\left( Z \right) = \frac{{n\left( Z \right)}}{{n\left( \Omega \right)}} = \frac{1}{3}\)
Chọn B
d) Gọi T là biến cố “Bình đứng trước An”. Khi đó ta có
\(T = \left\{ {\left( {B,A,C} \right),\left( {B,C,A} \right),\left( {C,B,A} \right)} \right\}\). Suy ra \(n\left( T \right) = 3\). Vậy \(P\left( T \right) = \frac{{n\left( T \right)}}{{n\left( \Omega \right)}} = \frac{1}{2}\)
Chọn D
Bài 9.13 trang 67 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố quan trọng. Thông thường, bài toán sẽ cho trước một số vectơ và yêu cầu tính toán một số đại lượng liên quan, chẳng hạn như độ dài của vectơ, góc giữa hai vectơ, hoặc tọa độ của một điểm.
Để giải bài 9.13 trang 67, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử bài toán yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức tính độ dài của vectơ:
|AB| = √((x2 - x1)² + (y2 - y1)²)
Ngoài bài 9.13 trang 67, sách bài tập Toán 10 Kết nối tri thức còn có nhiều bài tập tương tự, yêu cầu học sinh vận dụng các kiến thức về vectơ để giải quyết các bài toán khác nhau. Một số dạng bài tập thường gặp bao gồm:
Để giải bài tập vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Bài 9.13 trang 67 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với hướng dẫn chi tiết trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!
Công thức | Mô tả |
---|---|
|AB| = √((x2 - x1)² + (y2 - y1)²) | Độ dài của vectơ AB |
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ a và b |