Logo Header
  1. Môn Toán
  2. Giải bài 6.50 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.50 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức

Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.50 trang 25, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Bất phương trình (1) vô nghiệm khi và chỉ khi

Đề bài

Bất phương trình \(m{x^2} - (2m - 1)x + m + 1 < 0\) (1) vô nghiệm khi và chỉ khi

A. \(m \le \frac{1}{8}\)

B. \(m > \frac{1}{8}\)

C. \(m < \frac{1}{8}\)

D. \(m \ge \frac{1}{8}\)

Phương pháp giải - Xem chi tiếtGiải bài 6.50 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

Bước 1: Xét m = 0, BPT (1) trở thành BPT bậc nhất ẩn x luôn có nghiệm => Loại điều kiện m = 0

Bước 2: Xét m ≠ 0, \(m{x^2} - (2m - 1)x + m + 1 < 0\) vô nghiệm \( \Leftrightarrow \)\(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)

Bước 3: Kết luận

Lời giải chi tiết

+) Với m = 0, BPT (1) có dạng \(x + 1 < 0\) \( \Leftrightarrow x < - 1\)

Suy ra BPT (1) có tập nghiệm \(\left( { - \infty ; - 1} \right)\) nên m = 0 không thỏa mãn

+) Với m ≠ 0, BPT (1) là BPT bậc hai ẩn x

Khi đó BPT (1) vô nghiệm khi và chỉ khi \(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow m > 0\) và ∆ ≤ 0

Xét ∆ ≤ 0 \( \Leftrightarrow {(2m - 1)^2} - 4m(m + 1) \le 0 \Leftrightarrow - 8m + 1 \le 0 \Leftrightarrow m \ge \frac{1}{8}\)

Vậy với \(m \ge \frac{1}{8}\) thì BPT (1) vô nghiệm

\( \Rightarrow \) Chọn D

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6.50 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Vectơ: Định nghĩa, các phép toán trên vectơ (cộng, trừ, nhân với một số).
  • Tích vô hướng của hai vectơ: Công thức tính, ứng dụng để tính góc giữa hai vectơ, kiểm tra vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán trên vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:

  • Các điểm và vectơ đã cho.
  • Yêu cầu của bài toán (ví dụ: tính độ dài vectơ, tính góc giữa hai vectơ, chứng minh một đẳng thức vectơ).

Lời giải chi tiết

Để giải bài 6.50 trang 25, chúng ta sẽ thực hiện các bước sau:

  1. Bước 1: Chọn hệ tọa độ thích hợp. Việc chọn hệ tọa độ phù hợp sẽ giúp đơn giản hóa bài toán.
  2. Bước 2: Biểu diễn các vectơ đã cho trong hệ tọa độ.
  3. Bước 3: Sử dụng các công thức và tính chất của vectơ để giải quyết bài toán.
  4. Bước 4: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ, giả sử bài toán yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức sau:

|AB| = √((x2 - x1)² + (y2 - y1)²)

Các dạng bài tập tương tự

Ngoài bài 6.50, còn rất nhiều bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh vận dụng các kiến thức về vectơ để giải quyết các bài toán về hình học phẳng, chẳng hạn như:

  • Chứng minh hai đường thẳng song song, vuông góc.
  • Tính diện tích tam giác, tứ giác.
  • Tìm tọa độ của một điểm thỏa mãn một điều kiện nào đó.

Mẹo giải bài tập vectơ

Để giải bài tập vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:

  • Vẽ hình: Vẽ hình minh họa sẽ giúp bạn hình dung rõ hơn về bài toán và tìm ra phương pháp giải phù hợp.
  • Sử dụng các công thức: Nắm vững các công thức và tính chất của vectơ là rất quan trọng.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Vật lý: Vectơ được sử dụng để biểu diễn các đại lượng vật lý như vận tốc, gia tốc, lực.
  • Tin học: Vectơ được sử dụng trong đồ họa máy tính, xử lý ảnh, và các ứng dụng khác.
  • Kỹ thuật: Vectơ được sử dụng trong xây dựng, cơ khí, và các ngành kỹ thuật khác.

Kết luận

Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10