Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.50 trang 25, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Bất phương trình (1) vô nghiệm khi và chỉ khi
Đề bài
Bất phương trình \(m{x^2} - (2m - 1)x + m + 1 < 0\) (1) vô nghiệm khi và chỉ khi
A. \(m \le \frac{1}{8}\)
B. \(m > \frac{1}{8}\)
C. \(m < \frac{1}{8}\)
D. \(m \ge \frac{1}{8}\)
Phương pháp giải - Xem chi tiết
Bước 1: Xét m = 0, BPT (1) trở thành BPT bậc nhất ẩn x luôn có nghiệm => Loại điều kiện m = 0
Bước 2: Xét m ≠ 0, \(m{x^2} - (2m - 1)x + m + 1 < 0\) vô nghiệm \( \Leftrightarrow \)\(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)
Bước 3: Kết luận
Lời giải chi tiết
+) Với m = 0, BPT (1) có dạng \(x + 1 < 0\) \( \Leftrightarrow x < - 1\)
Suy ra BPT (1) có tập nghiệm \(\left( { - \infty ; - 1} \right)\) nên m = 0 không thỏa mãn
+) Với m ≠ 0, BPT (1) là BPT bậc hai ẩn x
Khi đó BPT (1) vô nghiệm khi và chỉ khi \(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow m > 0\) và ∆ ≤ 0
Xét ∆ ≤ 0 \( \Leftrightarrow {(2m - 1)^2} - 4m(m + 1) \le 0 \Leftrightarrow - 8m + 1 \le 0 \Leftrightarrow m \ge \frac{1}{8}\)
Vậy với \(m \ge \frac{1}{8}\) thì BPT (1) vô nghiệm
\( \Rightarrow \) Chọn D
Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Để giải bài 6.50 trang 25, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử bài toán yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Chúng ta có thể sử dụng công thức sau:
|AB| = √((x2 - x1)² + (y2 - y1)²)
Ngoài bài 6.50, còn rất nhiều bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh vận dụng các kiến thức về vectơ để giải quyết các bài toán về hình học phẳng, chẳng hạn như:
Để giải bài tập vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 6.50 trang 25 Sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.