Logo Header
  1. Môn Toán
  2. Giải bài 8.12 trang 55 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 8.12 trang 55 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 8.12 trang 55 Sách bài tập Toán 10 - Kết nối tri thức

Bài 8.12 trang 55 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.12 trang 55, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

a) Có bao nhiêu cách sắp xếp các chữ cái của từ "KHIÊNG" thành một dãy kí tự gồm 6 chữ cái khác nhau (có thể là vô nghĩa)?

Đề bài

a) Có bao nhiêu cách sắp xếp các chữ cái của từ "KHIÊNG" thành một dãy kí tự gồm 6 chữ cái khác nhau (có thể là vô nghĩa)?

b) Cùng câu hỏi như a) nhưng yêu cầu hai chữ cái đầu tiên là các phụ âm?

c) Giống câu hỏi a) nhưng yêu cầu các phụ âm phải đứng liên tiếp với nhau.

Lời giải chi tiết

a) Từ KHIÊNG gồm 6 chữ cái khác nhau là K, H, I, Ê, N, G.

Để sắp xếp 6 chữ cái theo 1 thứ tự bất kì là 1 hoán vị của 6 chữ cái này.

Số cách sắp xếp các chữ cái của từ "KHIÊNG" thành một dãy kí tự gồm 6 chữ cái khác nhau là:

6!= 720 cách

b) Từ “KHIÊNG” có 4 phụ âm là K, H, N và G.

Chọn 2 trong 4 phụ âm (để xếp vào 2 vị trí đầu tiên) ta có:

 \(A_4^2 = 12\) (cách)

Số cách sắp xếp 4 chữ cái còn lại vào 4 vị trí tiếp theo là: 4! = 24 cách

Theo quy tắc nhân, số cách sắp xếp cần tìm là:

12. 24 = 288 cách.

c) 4 phụ âm phải đứng liên tiếp nhau do đó có 3 trường hợp:

- TH1: vị trí các phụ âm từ trái qua phải là 1, 2, 3, 4.

- TH2: vị trí các phụ âm từ trái qua phải là 2, 3, 4, 5.

- TH3: vị trí các phụ âm từ trái qua phải là 3, 4, 5, 6.

Trongg mỗi trường hợp:

 Số cách xếp 4 phụ âm vào 4 vị trí đã chọn là: 4! = 24 cách

Số cách xếp 2 nguyên âm vào 2 vị trí còn lại là: 2! = 2

Vậy mỗi trường hợp có số cách sắp xếp thỏa mãn là:

24 . 2= 48 cách

Vậy trong mỗi trường hợp, ta đều có 48 cách sắp xếp.

Tổng số cách sắp xếp là: 48+ 48+ 48= 144 cách.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 8.12 trang 55 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục bài tập toán lớp 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 8.12 trang 55 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 8.12 trang 55 sách bài tập Toán 10 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, giải các bài toán về khoảng cách, diện tích.

Phân tích bài toán:

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:

  • Các điểm và vectơ đã cho: Xác định các điểm và vectơ được đề cập trong bài toán.
  • Yêu cầu của bài toán: Xác định rõ điều gì cần tìm hoặc chứng minh.
  • Các mối quan hệ giữa các yếu tố: Tìm hiểu mối quan hệ giữa các điểm, vectơ và các yếu tố khác trong bài toán.

Lời giải chi tiết:

Để giải bài 8.12 trang 55 sách bài tập Toán 10 Kết nối tri thức, chúng ta sẽ thực hiện các bước sau:

  1. Vẽ hình: Vẽ hình minh họa bài toán, giúp chúng ta hình dung rõ hơn về các yếu tố và mối quan hệ giữa chúng.
  2. Chọn hệ tọa độ: Chọn một hệ tọa độ thích hợp để biểu diễn các điểm và vectơ.
  3. Biểu diễn các vectơ: Biểu diễn các vectơ bằng tọa độ.
  4. Thực hiện các phép toán: Thực hiện các phép toán trên vectơ để tìm ra kết quả cần thiết.
  5. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử bài toán yêu cầu tính độ dài của một đoạn thẳng. Chúng ta có thể sử dụng công thức tính độ dài của một đoạn thẳng dựa trên tọa độ của hai điểm đầu mút. Công thức này là:

d = √((x2 - x1)² + (y2 - y1)²)

Trong đó, (x1, y1) và (x2, y2) là tọa độ của hai điểm đầu mút.

Lưu ý:

  • Khi giải bài toán về vectơ, chúng ta cần chú ý đến dấu của các tọa độ.
  • Sử dụng công thức một cách chính xác và cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự:

Để rèn luyện kỹ năng giải bài toán về vectơ, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 10 Kết nối tri thức. Các bài tập này sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài toán khó hơn.

Kết luận:

Bài 8.12 trang 55 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bằng cách nắm vững các kiến thức cơ bản và thực hiện các bước giải một cách cẩn thận, chúng ta có thể giải quyết bài toán này một cách hiệu quả.

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em học sinh hiểu rõ hơn về bài toán và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10