Logo Header
  1. Môn Toán
  2. Giải bài 13 trang 72 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 13 trang 72 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 13 trang 72 Sách bài tập Toán 10 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 13 trang 72 sách bài tập Toán 10 - Kết nối tri thức. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và áp dụng kiến thức vào các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có M, N, P lần lượt là trung điểm của các đoạn thẳng BC, AC, AB. Biết rằng M( 1; 2), N(O; -1) và P(-2; 3). a) Lập phương trình tham số của đường thẳng BC. b) Lập phương trình tổng quát của đường trung trực của đoạn thẳng BC

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có M, N, P lần lượt là trung điểm của các đoạn thẳng BC, AC, AB. Biết rằng M( 1; 2), N(O; -1) và P(-2; 3). 

a) Lập phương trình tham số của đường thẳng BC.

b) Lập phương trình tổng quát của đường trung trực của đoạn thẳng BC

Lời giải chi tiết

a) Xét tam giác ABC có:

P, N là trung điểm của AB, Ac

=> PN // BC

\( \Rightarrow \overrightarrow {{u_{BC}}} = \frac{1}{2}\overrightarrow {PN} = (1; - 2)\) là vectơ chỉ phương của BC

 Có BC đi qua M(1;2) nên BC có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\end{array} \right.\)

 b) Gọi \(\Delta \) là đường trung trực của BC.

 - \(\Delta \) đi qua điểm M(1,2) là trung điểm BC

 - \(\Delta \) vuông góc với BC nên \(\overrightarrow {{n_\Delta }} = \overrightarrow {{u_{BC}}} = (1; - 2)\) là vectơ pháp tuyến của \(\Delta \)

Vậy phương trình tổng quát của \(\Delta \) là: 1(x-1)- 2(y-2)=0 <=> x-2y+3=0

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 13 trang 72 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Bài viết liên quan

Giải bài 13 trang 72 Sách bài tập Toán 10 - Kết nối tri thức: Tổng quan

Bài 13 trang 72 sách bài tập Toán 10 - Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung chi tiết bài 13 trang 72

Bài 13 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vectơ: Yêu cầu học sinh xác định vectơ dựa trên các điểm cho trước, hoặc dựa trên các phép toán vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh đẳng thức.
  • Dạng 4: Ứng dụng vectơ trong hình học: Giải các bài toán liên quan đến hình học phẳng, sử dụng vectơ để biểu diễn các yếu tố hình học.

Lời giải chi tiết bài 13 trang 72

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 13 trang 72, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập.

Câu 1: (Ví dụ minh họa)

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC
  3. Vậy, AB + AC = 2AM (đpcm)

Câu 2: (Ví dụ minh họa)

Cho hình bình hành ABCD. Tìm vectơ AD theo các vectơ ABAC.

Lời giải:

Vì ABCD là hình bình hành, nên AD = BC. Mặt khác, BC = AC - AB. Do đó, AD = AC - AB.

Mẹo giải bài tập vectơ hiệu quả

  • Nắm vững định nghĩa và tính chất của vectơ: Đây là nền tảng cơ bản để giải các bài tập về vectơ.
  • Sử dụng quy tắc cộng, trừ, nhân vectơ một cách linh hoạt: Hiểu rõ các quy tắc này sẽ giúp bạn đơn giản hóa các bài toán.
  • Vẽ hình minh họa: Vẽ hình sẽ giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Luyện tập thường xuyên: Làm nhiều bài tập sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 10, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 - Kết nối tri thức
  • Sách bài tập Toán 10 - Kết nối tri thức
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, các bạn học sinh sẽ tự tin hơn khi giải bài 13 trang 72 sách bài tập Toán 10 - Kết nối tri thức. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10