Bài 4.23 trang 58 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.23 trang 58, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; - 1),B(1;4) và C(7;0).
Đề bài
Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(2; - 1),\,\,B(1;4)\) và \(C(7;0).\)
a) Tính độ dài các đoạn thẳng \(AB,\,\,BC\) và \(CA.\) Từ đó suy ra tam giác \(ABC\) là một tam giác vuông cân.
b) Tìm tọa độ của điểm \(D\) sao cho tứ giác \(ABDC\) là một hình vuông.
Phương pháp giải - Xem chi tiết
- Tính độ dài đoạn thẳng \(AB,\,\,AC,\,\,BC\)
- Áp dụng định lý Pi-ta-go đảo để chứng minh \(\Delta ABC\) vuông cân tại \(A\)
- Sử dụng tích chất hai vectơ bằng nhau để tìm điểm \(D\): \(\overrightarrow {AB} = \overrightarrow {DC} \)
Lời giải chi tiết
a) Ta có: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {4 + 1} \right)}^2}} = \sqrt {26} \)
\(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( {7 - 2} \right)}^2} + {{\left( {0 + 1} \right)}^2}} = \sqrt {26} \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {0 - 4} \right)}^2}} = \sqrt {52} = 2\sqrt {13} \)
Xét \(\Delta ABC\) có: \(A{B^2} + A{C^2} = 26 + 26 = 52 = B{C^2}\)
\( \Rightarrow \) \(\Delta ABC\) vuông tại \(A\)
mặt khác \(AB = AC = \sqrt {26} \)
nên \(\Delta ABC\) vuông cân tại \(A\)
b) Gọi điểm \(D\) có tọa độ là: \(D(x;y).\)
Xét hình vuông \(ABDC\) có:
\(\begin{array}{l}\overrightarrow {AB} = \overrightarrow {CD} \\ \Leftrightarrow \,\,(1 - 2;4 + 1) = (x - 7;y - 0)\\ \Leftrightarrow \,\,( - 1;5) = (x - 7;y)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 7 = - 1}\\{y = 5}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = 5}\end{array}} \right.\end{array}\)
Vậy \(D(6;5)\)
Bài 4.23 trang 58 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán thuộc chương trình học về vectơ trong không gian. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Nội dung bài toán 4.23: (Nội dung bài toán cụ thể sẽ được trình bày chi tiết ở đây, giả sử bài toán yêu cầu chứng minh một đẳng thức vectơ hoặc tìm tọa độ của một điểm dựa trên các vectơ cho trước)
Lời giải chi tiết:
Ví dụ minh họa: (Giả sử bài toán yêu cầu chứng minh rằng nếu ABCD là hình bình hành thì overrightarrow{AB} = overrightarrow{DC} và overrightarrow{AD} = overrightarrow{BC})
Chứng minh:
Vì ABCD là hình bình hành nên:
Do đó, overrightarrow{AB} = overrightarrow{DC} và overrightarrow{AD} = overrightarrow{BC} (đpcm)
Lưu ý:
Bài tập tương tự: (Liệt kê một số bài tập tương tự để học sinh luyện tập)
Tổng kết:
Bài 4.23 trang 58 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ giải quyết bài toán này một cách dễ dàng và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!