Bài 1.36 trang 14 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.36 trang 14, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Hãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp.
Đề bài
Hãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp.
\(A = \left\{ {\left. {x \in \mathbb{Q}} \right|\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0} \right\};\)
\(B = \left\{ {\left. {x \in \mathbb{N}} \right|{x^2} > 2\,\, \rm{và} \,\,x < 4} \right\}\)
Phương pháp giải - Xem chi tiết
- Giải phương trình \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0\) và \(\left\{ {\begin{array}{*{20}{c}}{{x^2} > 2}\\{x < 4}\end{array}.} \right.\)
- Liệt kê các phần tử thỏa mãn tập hợp A và tập hợp B.
Lời giải chi tiết
+) Giải phương trình: \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {{x^2} - 3x + 1} \right) = 0\)
\( \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{2x + 1 = 0}\\{{x^2} + x - 1 = 0}\\{2{x^2} - 3x + 1 = 0}\end{array}}\right. \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 1}}{2}}\\{x = \frac {-1 + \sqrt 5}{2}}\\{x = \frac {-1 - \sqrt 5}{2}}\\{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)
Vì \(x \in \mathbb{Q}\) nên chỉ có \(x = \frac{{ - 1}}{2},x = \frac{1}{2}\) và \(x = 1\) thỏa mãn.
\( \Rightarrow \,\,A = \left\{ {\frac{{ - 1}}{2};\frac{1}{2};1} \right\}\)
+) Giải hệ phương trình
\(\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{c}}{{x^2} > 2}\\{x < 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{l}}{x > \sqrt 2 }\\{x < - \sqrt 2 }\end{array}} \right.}\\{x < 4}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sqrt 2 < x < 4}\\{x < - \sqrt 2 }\end{array}} \right.} \right.}\\{ \rm { Vì } \, x \in \mathbb N \Rightarrow x \in \left\{ {2;3} \right\}}\\{ \Rightarrow B = \left\{ {2;3} \right\}}\end{array}\)
Bài 1.36 trang 14 sách bài tập Toán 10 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ. Để giải bài này, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Để giải bài 1.36 trang 14, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử bài toán yêu cầu tìm vectơ tổng của hai vectơ a và b. Chúng ta có thể sử dụng quy tắc hình bình hành để tìm vectơ tổng c = a + b. Vectơ c sẽ có điểm đầu là điểm đầu của vectơ a và điểm cuối là điểm cuối của vectơ b.
Ngoài bài 1.36, sách bài tập Toán 10 - Kết nối tri thức còn có nhiều bài tập tương tự về vectơ. Các bài tập này thường yêu cầu học sinh:
Để giải tốt các bài tập về vectơ, bạn có thể tham khảo một số mẹo sau:
Bài 1.36 trang 14 sách bài tập Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập về vectơ.
Hãy luyện tập thêm nhiều bài tập khác để nắm vững kiến thức và kỹ năng về vectơ nhé!
Vectơ | Định nghĩa |
---|---|
a | Một đoạn thẳng có hướng |
b | Một đoạn thẳng có hướng |