Bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 10. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Khai triển các đa thức
Đề bài
Khai triển các đa thức
a) \({(x - 2)^4}\); b) \({(x + 2)^5}\);
c) \({(2x - 3y)^4}\); d) \({(2x - y)^5}\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức khai triển \({(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\) và \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).
Lời giải chi tiết
a) \({(x - 2)^4} = {x^4} + 4{x^3}( - 2) + 6{x^2}{( - 2)^2} + 4x{( - 2)^3} + {( - 2)^4}\)
\( = {x^4} - 8{x^3} + 24{x^2} - 32x + 16\)
b) \({(x + 2)^5} = {x^5} + 5{x^4}.2 + 10{x^3}{.2^2} + 10{x^2}{.2^3} + 5x{.2^4} + {2^5}\)
\( = {x^5} + 10{x^4} + 40{x^3} + 80{x^2} + 80x + 32\)
c) \({(2x - 3y)^4} = {(2x)^4} + 4{(2x)^3}(3y) + 6{(2x)^2}{(3y)^2} + 4(2x){(3y)^3} + {(3y)^4}\)
\( = 16{x^4} + 96{x^3}y + 216{x^2}{y^2} + 216x{y^3} + 81{y^4}\)
d) \({(2x - y)^5} = {(2x)^5} + 5{(2x)^4}.( - y) + 10{(2x)^3}.{( - y)^2}\)
\( + 10{(2x)^2}.{( - y)^3} + 5(2x).{( - y)^4} + {( - y)^5}\)
\( = 32{x^5} - 80{x^4}y + 80{x^3}{y^2} - 40{x^2}{y^3} + 10x{y^4} - {y^5}\)
Bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc ứng dụng kiến thức về vectơ trong giải quyết các bài toán hình học. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Đề bài: (Nội dung đề bài cụ thể của bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức sẽ được trình bày chi tiết tại đây)
Lời giải:
Ví dụ minh họa: (Giải chi tiết bài toán với các bước cụ thể, sử dụng hình vẽ minh họa nếu cần thiết)
Lưu ý quan trọng:
Mở rộng kiến thức:
Ngoài bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải toán về vectơ.
Các bài tập liên quan:
Tổng kết:
Bài 8.13 trang 57 SBT Toán 10 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán hình học. Hy vọng với lời giải chi tiết và dễ hiểu mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập và giải quyết các bài toán tương tự.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Tích vô hướng | Một phép toán giữa hai vectơ cho ra một số. |