Logo Header
  1. Môn Toán
  2. Giải bài 6.30 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.30 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Giải bài 6.30 trang 21 Sách bài tập Toán 10 - Kết nối tri thức

Bài 6.30 trang 21 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh xác định mối quan hệ giữa các vectơ, tính toán độ dài vectơ, và sử dụng các tính chất của vectơ để chứng minh các đẳng thức hình học.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.30 trang 21, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \(\sqrt {2x - 3} = x - 3\) 

b) \((x - 3)\sqrt {{x^2} + 4} = {x^2} - 9\)

Phương pháp giải - Xem chi tiếtGiải bài 6.30 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống 1

a) Giải PT dạng \(\sqrt {ax + b} = cx + d\) (1)

Bước 1: Bình phương 2 vế của (1) ta được PT \({c^2}{x^2} + (2dc - a)x + ({d^2} - b) = 0\) (2)

Bước 2: Giải PT (2)

Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào vế phải của PT (1) để tìm ra các nghiệm thỏa mãn vế phải ≥ 0 rồi kết luận

b)

Bước 1: Chuyển x2 – 9 sang vế trái cho vế phải bằng 0 rồi biến đổi PT đã cho thành phương trình tích

Bước 2: Giải phương trình tích vừa tìm được rồi kết luận nghiệm của PT đã cho

Lời giải chi tiết

a) \(\sqrt {2x - 3} = x - 3\) (1)

Bình phương 2 vế của (1) ta được:

\(2x - 3 = {x^2} - 6x + 9 \Leftrightarrow {x^2} - 8x + 12 = 0 \Leftrightarrow x = 2\) hoặc x = 6

+) Thay x = 2 vào vế phải PT (1): 2 – 3 = -1 < 0

+) Thay x = 5 vào vế phải PT (1): 6 – 3 = 3 > 0

Vậy PT (1) nghiệm duy nhất là x = 6

b) \((x - 3)\sqrt {{x^2} + 4} = {x^2} - 9\) \( \Leftrightarrow (x - 3)\sqrt {{x^2} + 4} - ({x^2} - 9) = 0 \Leftrightarrow (x - 3)\sqrt {{x^2} + 4} - (x - 3)(x + 3) = 0\)

\( \Leftrightarrow (x - 3)(\sqrt {{x^2} + 4} - x - 3) = 0\)

TH1: \(x - 3 = 0 \Leftrightarrow x = 3\)

TH2: \(\sqrt {{x^2} + 4} - x - 3 = 0\) \(\sqrt {{x^2} + 4} = x + 3\) (2)

Bình phương 2 vế của (2) ta được:

\({x^2} + 4 = {x^2} + 6x + 9 \Leftrightarrow 6x = - 5 \Leftrightarrow x = - \frac{5}{6}\)

+) Thay \(x = - \frac{5}{6}\) vào vế phải PT (2): \( - \frac{5}{6} + 3 = \frac{{13}}{6} > 0\)

Vậy PT đã cho có hai nghiệm phân biệt là \(x = 3;x = - \frac{5}{6}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6.30 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6.30 trang 21 Sách bài tập Toán 10 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.30 trang 21 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán điển hình về ứng dụng của vectơ trong hình học phẳng. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán trên vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất và ứng dụng.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, tính toán các phép toán trên vectơ bằng tọa độ.

Phân tích bài toán và tìm hướng giải quyết

Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, để giải bài toán về vectơ, chúng ta có thể sử dụng các phương pháp sau:

  1. Sử dụng định nghĩa và tính chất của vectơ: Chứng minh các đẳng thức vectơ, xác định mối quan hệ giữa các vectơ.
  2. Sử dụng tích vô hướng của hai vectơ: Tính góc giữa hai vectơ, kiểm tra tính vuông góc của hai vectơ.
  3. Sử dụng hệ tọa độ: Biểu diễn các vectơ bằng tọa độ, tính toán các phép toán trên vectơ bằng tọa độ.

Lời giải chi tiết bài 6.30 trang 21

(Nội dung lời giải chi tiết bài 6.30 trang 21 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình vẽ nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải bài toán.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về phương pháp giải bài toán, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp học sinh rèn luyện kỹ năng giải bài tập và tự tin hơn khi đối mặt với các bài toán tương tự trong tương lai.

Lưu ý quan trọng khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng đúng các định nghĩa và tính chất của vectơ.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nắm vững kiến thức và kỹ năng.

Tổng kết

Bài 6.30 trang 21 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ hiểu rõ phương pháp giải bài toán và tự tin làm bài tập.

Bảng tổng hợp các công thức vectơ quan trọng

Công thứcMô tả
a + b = b + aTính giao hoán của phép cộng vectơ
(a + b) + c = a + (b + c)Tính kết hợp của phép cộng vectơ
a.b = |a||b|cos(θ)Công thức tính tích vô hướng của hai vectơ

Tài liệu, đề thi và đáp án Toán 10