Bài 4.1 trang 47 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.1 trang 47 sách bài tập Toán 10 Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tam giác \(ABC\). Gọi \(M\) là trung điểm của cạnh \(BC\) và \(G\) là trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?
Đề bài
Cho tam giác \(ABC\). Gọi \(M\) là trung điểm của cạnh \(BC\) và \(G\) là trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?
a) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) cùng phương.
b) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) cùng hướng.
c) Hai vectơ \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng.
d) Độ dài của vectơ \(\overrightarrow {AM} \) bằng ba lần độ dài của vectơ \(\overrightarrow {MG} \).
Phương pháp giải - Xem chi tiết
- Sử dụng tính chất của trọng tâm tam giác
- Các định các vectơ cùng phương, cùng hướng hay ngược hướng.
Lời giải chi tiết
Xét \(\Delta ABC\) có: \(M\) là trung điểm của \(BC\)
\(G\) là trọng tâm của \(\Delta ABC\)
\( \Rightarrow \,\,AG = \frac{2}{3}GM.\)
mặt khác \(\overrightarrow {GA} \) và \(\overrightarrow {GM} \) ngược hướng
nên \(\left| {\overrightarrow {AM} } \right| = 3\left| {\overrightarrow {MG} } \right|\)
Vậy khẳng định a,c,d là khẳng định đúng còn khẳng định b là khẳng định sai.
Bài 4.1 trang 47 sách bài tập Toán 10 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ. Để giải bài này, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
(Ở đây sẽ là lời giải chi tiết của bài 4.1 trang 47, bao gồm các bước giải, giải thích rõ ràng và sử dụng hình vẽ minh họa nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm bắt được phương pháp giải bài.)
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ xem xét một ví dụ minh họa:
(Ở đây sẽ là một ví dụ tương tự bài 4.1 trang 47, được giải chi tiết để học sinh tham khảo.)
Để rèn luyện thêm kỹ năng giải bài tập về vectơ, các em có thể làm thêm các bài tập tương tự sau:
Bài 4.1 trang 47 sách bài tập Toán 10 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ hiểu rõ phương pháp giải bài và tự tin làm bài tập. Chúc các em học tốt!
Công thức | Mô tả |
---|---|
a + b = b + a | Tính giao hoán của phép cộng vectơ |
a + (b + c) = (a + b) + c | Tính kết hợp của phép cộng vectơ |
k(a + b) = ka + kb | Phân phối của phép nhân vectơ với một số thực |