Bài 7.17 trang 38 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh xác định các vectơ, tính toán độ dài vectơ, và chứng minh các đẳng thức vectơ.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.17 trang 38, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM
Đề bài
Trong mặt phẳng \(Oxy\), cho hai điểm \(A\left( { - 3;0} \right),B\left( {1; - 2} \right)\) và đường thẳng \(d:x + y - 1 = 0\)
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d
b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM
Phương pháp giải - Xem chi tiết
+ Thay từng điểm A, B vào đường thẳng d. Tích nhận được là số dương thì hai điểm nằm cùng phía với đường thẳng d. Tích nhận được là số âm thì hai đường thẳng nằm khác phía với đường thẳng d.
+ AB cố định, nên chu vi tam giác nhỏ nhất khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có \(MA + MB \ge MA' + MB \ge A'B\).
Dấu bằng xảy ra khi \(M = A'B \cap d\)
Lời giải chi tiết
a) Ta có \(\left( { - 3 + 0 - 1} \right)\left( {1 - 2 - 1} \right) = 8 > 0\) nên hai điểm A, B nằm cùng phía với đường thẳng d
b) AB cố định, nên chu vi tam giác nhỏ nhất khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có \(MA + MB \ge MA' + MB \ge A'B\).
Dấu bằng xảy ra khi \(M = A'B \cap d\)
+ Gọi điểm H là chân đường cao hạ từ A đến đường thẳng d, khi đó AH vuông góc với d \( \Rightarrow \overrightarrow {{v_{AH}}} = \overrightarrow {{n_d}} = \left( {1;1} \right) \Rightarrow \overrightarrow {{n_{AH}}} = \left( {1; - 1} \right)\)
+ Phương trình đường thẳng AH đi qua \(A\left( { - 3;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{n_{AH}}} = \left( {1; - 1} \right)\): \(AH:1\left( {x + 3} \right) - 1\left( {y - 0} \right) = 0 \Rightarrow AH:x - y + 3 = 0\)
+ \(H = AH \cap d \Rightarrow H:\left\{ \begin{array}{l}x + y - 1 = 0\\x - y + 3 = 0\end{array} \right. \Rightarrow H\left( { - 1;2} \right)\)
+ Điểm A’ đối xứng với A qua d khi đó H là trung điểm của AA’
Suy ra \(A'\left( {2.\left( { - 1} \right) + 3;2.2 - 0} \right) \Rightarrow A'\left( {1;4} \right)\)
+ Viết phương trình đưởng thẳng A’B: \(\overrightarrow {A'B} = \left( {0;6} \right) = \left( {0;1} \right) \Rightarrow \overrightarrow n = \left( {0;1} \right)\)
\(A'B:x - 1 = 0\)
+ \(A'B \cap d \Rightarrow \left\{ \begin{array}{l}x - 1 = 0\\x + y - 1 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right. \Rightarrow M\left( {1;0} \right)\)
Bài 7.17 trang 38 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài toán điển hình về ứng dụng của vectơ trong hình học phẳng. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp một hình vẽ hoặc một mô tả về các điểm và vectơ liên quan. Dựa vào đó, chúng ta cần:
(Nội dung lời giải chi tiết bài 7.17 trang 38 sẽ được trình bày tại đây. Bao gồm các bước giải cụ thể, các phép tính và giải thích rõ ràng. Ví dụ:)
Ví dụ: Giả sử bài toán yêu cầu chứng minh rằng vectơ AB = vectơ CD. Chúng ta có thể thực hiện như sau:
Ngoài bài 7.17, còn rất nhiều bài tập tương tự trong sách bài tập Toán 10 - Kết nối tri thức với cuộc sống. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để học tập và ôn luyện kiến thức về vectơ, bạn có thể tham khảo các tài liệu sau:
Bài 7.17 trang 38 sách bài tập Toán 10 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán.